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Chapter 1

BRI AR
L1 BERIT-BE

L1.1 BRI HEA i SCRAE B o X

Definition 1.1 —/MEFEA G, H FE XTIz, frfEReis, H e
(1) 557
(2) fFAAERNIIT
(3) F— A ICEBEAES TC
MF G &4

Theorem 1.1 (FERFEGraz ) — 1= EE G L L& LT —A=niE f, b fik, s
(1) 455 4F
(2) BAE 24T
(3) H—A AR A 35T
W # G = —AFF.

Proof ARG ML BB TCRI 20 TCHYAFAEMEHE ) — B B A — O e AFAE . (Rl a € G
W a;' REMZEBTT, WA

-1 _ -1
aa; =eaaj
(- -1
_(aL ) ap aay

:eL
TRE—AZEVITRE NS AHTT. XHT
ae = aaila =a

TRE AT A AT, IR o
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(TR S (e 0p N o e S oS S (B SR § /97 YA vy RSt D N BRSSP €2
1E, H HA oA AT, RPARREORIE G 22— 8. T A4 h—A6l Ui i

Example 1.1 CEREFATASSRATAATESCHAERD) 58 R OZEREE 0 Shpy sk, & SO By —oc
B« axb=lalb,Ya, b € R Wig—A-21F, HAZLRAIT -1, 1, S olE A A T, (254
AR, AL AN ME—.

Theorem 1.2 (FEFHraz ) — 1 ZEE G L L LT A= nE i, ik fik s
(1) 54
(2)Va,be G B x,yeG, #iFax=b,ya=b
N4k G & —/N .

RPN EE i SO AL AR OL, R IR RSO E A IRIVEES G 7.

Theorem 1.3 (fiREEMEFME L) — N EZARES G L LT LT —AZUEH, Rk Lk
T

(1) %6

(2) %R kA AT

N AR G & —AFf.

Proof P EEIE] G A B

WG ={ar, - ,a,}, Waa; 2&n NRFEKITTER (HHEBGIE, Fi— @R ITE a,
W aiai, = a1 iICHITEN a;, = e. Va; € G,a1a; = aea;, HIHEFRGE] ea; = a;. Y] e 2 G 1Y
Ze ot XWT Va; € G, 3a; 15 aia; = e, TRENITTRAAAEALIIC. 25 F G 2— . o

L1.2 F-RERITRERIBE 4R

Theorem 1.4 (F-REMFHE ) T # G 4= G 89T % H, T =/~ F 4.
()H <G
(2)Va,b € Hyab™' € G
(3)Va,be H,a™' € G,ab € G

R TR T4, o TREEA —% e 3

Theorem 1.5 H Z#f G a9y A IRT &, LA THLANRE H> CH

Proof X J& T H 2 2 I A M S HAA ERAE, Brid H 28 o
NG TR B R R — TR
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Theorem 1.6 :
(DH; <G,i=1,2,-- ,n AR GWy—5 T8 NN, H <G
2)H,K<GHUK<G < H<K3 k<H
(3) TR RARE THE S LALLM TVA R, P H K < G,HK <G < HK=KH

Theorem 1.7 1= —#% G R 4L & T~ 1EM/A~ AT 8845

Proof % GHPINETHHMK, G=HUK. HFT HEETHE, TR IaecG-K, beK-H,
Bt ab € G = HN K. HAEEDSE ab J&T HifE KT HTE. O

AWML —A G T4 M, HA—E 2 TR, (HAT AR AL THEE.

Definition 1.3 M 2 H ({74, (M) = {a1---anla; e MUM ", n=1,2,--- } FRfE M 194 sl FRE, H
A S M BT

NSRRI AR
%W G, H < G,a € G, Ff aH 32 THE H I — DR B2 WL AARAL, BAMA,
%M HAY ab™' € H, 3 BFSEITR NS T H TR T2 G o AMERE S, BT
T a,- -, a,, 15
G=a1HU-~-UanH

JCE {ar, -+ a,} FRAE HAE G P NZERERAUER. FLRIIBA TR DAE SCHFESE, - HXT G 1
AREE R, BEA PRI R. IS AXF 2 PR A T A KR E?

Theorem 1.8 (e FEAEM BIEBl) AT W E L fo kTS BN ELZ R HE NI, N AETE
OGN B BARAH LR —1F 5.

Proof UMt
¢:aH — Ha™'

BRIV RT B — S XU o

M H RN R Z . AMERATRT AR H B2 () BRI, Bt HAE G iy
R ACHE |G« HI. HiffE G iR RSLAG

Theorem 1.9 (Lagrange) G = 7 [R#, H < G, W |G| = |H||G : H|.

FH I BN A — AT BREE ) 7582 T RF I b 2R B RO e B I 7, AT —JC R
MO RET B 1, AT @l = e TR BEIRE— & IR
IV Lagrange &3, FATid vl AUERAEOE A9 —4~ 2 PE.

Theorem 1.10 (Euler Theorem) i& m % X F I 69%4, % (a,m) =1 N

a®™ = 1(mod m)
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Proof HT (a,m) =1, T2 a€Z, T 12| = ¢(m), th Larange &ML EIG a* ™ = 1, i

a¢m =1

a®"™ = 1(mod m)

WAL, FRATTIR AT DA 1 BESR A ST AR DL R B/ NI AR A IR A — 2855 [ 3.

Lemma 1.1 %8 P £ — A~ 4E £15 LG L E N SAR A 2, W) G ZFT N RE.

Proof Ya,b € G, abab = e, TJ& ba =a"'b™' = ab. O
IRAERT DATIERS -

Theorem 1.11 T N RE Y = 6

Proof i I—5|HA Larange EIARATALE, 1, 2, 3, 4, S HEEERTDUREE. HabA S3 2onka
{1,2,3} i, E2 6 Briakxdprie. O

Theorem 1.12 i% H 4= K & # G o4 # /N F TR-T#, N

\HK| = |HI||K|
~HNK|

Proof i FHNK < K, At |[K : HNK| = HOK| Ji— 7, BT HK 7] DAVERSEE i AE Hk;

BYIF, IF ELRSEEASE 24 HALY kiky' € HNK, T5& Hky = Hk, — (HNK)ki = (HNK)kz. Uit

W HK (R 8E0 iy Hk, A %oe H O K A8 K FERFRIANEG B K - HO K. 28 b [HK| =
|H||K]|

|H K]
FIBEER R, FRATEW] PAZS B G & T WA TR — D A A2 A THEE G 194
BHE. IR TS — 5] B
Lemma 1.2 X G2 AREE, A<B<G, N

|H||K : H K| = o

[G:A] =[G :B][B:A]

Proof 15 G 1E B (B4 5 i
G:Ung, n=[G:B]

Jj=1

T B AE A (IEAE 5> fift

i)
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47 Ab;g; = Abygy, W big;(byg;)™"' € A, MIfi g;8 € bj'Aby C B, \Tfi j = j', TRi =1.
gil (i,)) # (1)) B, Abig; WiFIAIE. T2%F G 2 fRIET mn A~ A BIARRIVEE SR . i
[G:A]l=nm =[G : B][B:A]. O

Corollary 1.1 #f T# G s91£Z AN T# AB, [G: ANB] < [G: A][G : B]

Proof JMtFRATHZEER [B: AN B] < [G : A] %}F Vb, b' € B, N AN\ Bb # A\ Bb <> b(b')"" ¢
ANBC A< Ab# Ab, T2 [B: ANB] < [G: A] o

BUAE AT PAUE AT 5 B

Theorem 1.13 42 # Gty HANF#AB, % [G: Al % [G: Bl Z 4%, W [G:ANB] =[G : A][G:
B], .G = AB

Proof HimiHATAIABH [G : Bl | [G : ANB, [G : Al | [G : AN B, Fh & Zi5%)
|A||B|

[GiAﬂB]=[G:A][G:B]./\}\ﬁ'ﬁ|G|=m

= |AB|, T2 G = AB. O

1.1.3 TR

Theorem 1.14 :
(1)i& G A&, a,be G, N o(a)=o0(a™"), o(ab) = o(ba),
n

(2)i% Gx#, g€G, o0(g) =n o(g™) = o)

(3)ixGAB, HEXGoyT#,ge€G,o(g)=ng"€H, (n,m)=1, N geH

(4)1X G ZF%, 81,82 € G, 0(g1) = ny, 0(82) =ma, (n1,m) =15 8182 = 8281, M 0(8182) = mina,
B R ke, kb,

1.1.4 Jehisr

Definition 1.4 % G 2/, a.g € G, HAHE
a® =g 'ag

PRAER afE g TROILEASIE . JERIXTT G 97 H, FRATRMERE
H® =g 'Hg

PiAE HAE ¢ FRIFEHASTE . BRI ICE a, b € G IR, WERAF(E g € G, ifF a® = b.
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AIPABSE, PIICERAIER R M R AR, TR AR G hErAICER R T
AR EME, AR . RN IR S e R BV E IR R

Definition 1.5 % G 2#f, HZ G T4E, g€ G, ¥ HS =H, WFRICE g IEMAL H, FRETARER
IEHAE H e RS
Ng(H) = {g € G|H® = H}

& HAE G FRYIERML T FeRlREToR g W2 Vh € H, h8 = h, WFR g OB H, B o4 HiY
TLRMES
Cg(H)={g € G|h® = h,Yh e H}

N HTEG PRy . IE
Z(G) = C(G)

PRAERE G iYL

MGE AT AR, A TR IE AL A2 G BT — MR DR LAY
EETER O, — MR O R THE G Bt RR L.
NHFAVESE, FERE G A THEM, 5 M IR TR EoE 2 A

Theorem 1.15 M 27 G t4-F %, 5 M 2409 T 55T [G : Ng(M)]

Proof {T—5 M JEHER TN ¢~ 'Mg.

8§ Mg=g"Mg' = g'g'Mgg"™' =M
= gg ' € Ng(M)
& Ng(M)g =Ng(M)g'
M M ) EHEEERSE T MOIEMAL 715 G RS 4L o

TREAVAE LA M B IHees—E 2 1GI BT R, BUM 2 5 g e, WL G
LR, 5HIERY TR RO 1G9 AT R IR E B b B — N

Theorem 1.16 % p & & 4%, G & p" & N G F A E4E-F Lay ot

Proof a € G 72 G {yHL.LICY HAXY a K5 HOIE. TR29 0o T HIBEREECN 1. i
BATCRIFLITTI T2 p'. TR G PR EIHEC R I, A

pl=1+14---+14pt4...4ph

BTG W mod p = 0, T2/ p A 1 L8k, R p ASoic, sE A p-1 4>
JEF LA L TT. O
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1.1.5 )8 RS

I WHE G HIASICE gh TRk, o(g) =m, o(h) =n WA
nipm [m’n]
(1) o(g"h™) = WJ

) G AP ACH (m.n) H7EE
(3) G FAFAEBECH [m, n] BT
Proof (1): 1%
m = (m,n)my, n = (m,n)n

)
[m, n]

(m,n)

=nm, (ml,nl) =1

i (g ) = e A
o(g"h™) | nymi

Kz, BT
(gnhm)o(g"h"’)ml — gnmlo(g"hm)hmmlo(g"hm) —_—
Pl
Jrmmio(gnh™) e, n | mmyo(g"h™), n | (n,m)o(g"h™)
e VRS
m | (n,m)o(g"h™)
) [, n]
TR (n,m)), W[5 nm, | o(g"h™). % L ) =nym; =o(g"h™)

(2) ZIEICE g™ fE 1141 (2) , SLA5-
Q) BEFRA KA, HTAEER, FATEFMACS.

m = (m,n)p, n=(m,n)q, (p,q) =1

FATH (m, n) FE—2L 51k

(m,n) = rirars
Horpry DA EBLEHRITE p IR T, ro HAE SRR IITE q I RRE T, rs AMUE p Fl q 1Y
R o r Mory e i # j N ER. BE—4

rp, raq, r3

ZAHEMPHER. BUE, A RNTAEGRE = A0cRK, (R ENTBEr ST i =A% I H P
A, A ERL14E) 4), FFENTHRGERBA TR —DICRIBLUR rirorspg = [m,n]
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T HFA T X = AR,

0(g") =rip
o(g"™) =1

o(h"") =r2q
HHBTENmP A, BMEEE, hE L 140 ARIE, B0 E RS2 T a2 iR
AR ICE. O

S8 G RN, AT G PICE ab.o(a) =m, o(b) =n, (m,n) =1, FAFAERARAK
k, B3 a* = b*, EF mn |k, 2 m M0 REZ, 26T HHSHE R BT

Proof 1T
(b*)" = (a")" = e

FRn|mk, BT (nm) =1, FTn|k BUTEm |k FHRBEN-FHFLE, TEmn|k
R & (Ze,+) PIITTE THI2. M m = o(1) = 6, n = 0(2) = 3, fF1E k = 6 fiif5 (2)° =
(1)° = 0, {H mn REE: k. o

s B LT RSN E TREA R 2 R A IE AR

Proof % o(G) =ab, Vg € G, 1T G I THE, T/ o(g) =ab, AFRIUEFTHL g%, 0(g*) = b. I
i (g) & G AR JLTHE, TJE. o

1.2 IETBE. WRE. BERIE
1.2.1 [ERLFRERIRG I

Wi RAE T N2H G I THE, X G 1 N MR, BUG 2 N 4 & i
M54, B G = {Nala € R}, Hh R RATEENER. BOHEIE G g GBI TR, i H
SRR HGZEIE (Na)(ND) = Nab. Rt AT TH BRI Hw SORIHE TR e i, RIXTa—4
a € Na, b’ € Nb 5§ Na'b’ = Nab. X4 T 2R

NaNb = Nab & NaN =Na < NaNa'=N < aNa'c N, VaeG

BAihve, FATER Ng—DaGE R, WA N 552 N B3 TRE05 1R
R E X

Definition 1.6 #3#f G I THEN 2 G [UIEH TH#E, WS NS c N, Vg e G.it/EN < G.
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Example 1.2 :

WMEH<GHI[G:H] =2, H<G.

WE:Vx e G, #Hx e HWHx=H=xH; 7 x ¢ H W HxNH = ¢, xHNH = 2, HIYHH
G=HUHx=H\UxH, TR Hx=xH. 22 Hx=xH, |l H<G.

Remark: {3 aH = Ha F 2SR GHI%E, A TRE TURFAA] AT

Theorem 1.17 (E M FREIZE ) 1% G 7, Ta~&EFN
(I)N % G ¢ EHT#.
(2)N$ =N, Vg € G, B EM T LR A 48T, B LB P oy A L E el L4815 s B .
(3) N6(N) = G.
(4)%EFneN, WnkiEn Gkt EE Cn) CN, BI N AW G F 23 LK%,
(5)N £ G ¥ a9 8N A& 4% —A&TE % Ng =gN.

M IR AR MU PR A, DR T IR TR A THE R 4R, A X 2oty 2
SRBT UK THEAZ IR T8, B RA T LIIE LT G A {e).. A 288 AT LY
IR, TR 3ATE X
Definition 1.7 % G RV LAY IERL T4, Fritt G 2 Hft.

FAMVIIE— 5Bl Fre B, BWEHICARFIL TR, By~ L LS, e H—E 2 R
R OB EREE. SR AR BRI+ S %, R T A IRAR S B 2 AR R — LR A IRAE 1 —
AN I AE TR — T BRAT AT DAZRAT AR S Bt A2 PR 1) — LR B AT

I T R SRR AT I ML TR T YA

Theorem 1.18 %55 —7) EHLF A Ny - Ny, U Oy N; Fo (N, -+ N,) 13 KA EM T2,
Proof
VgEG, ne ﬂNi’ ng ENh [: 1,2,... ,S.

i=1

TRRBIEM TR, 55— IUATLE. o

THEATVEE , LR G I THEM, BEARE M/ M IE THE XN THEM
We? PA MY ACAER 8 M i/ NERL TR, WA

{m®|Vg e G,me M} c M®
[, BT MO 2 EiR FEN R MNE, T2
(m® |Vg e G,me M) c M®

P Bl RS AR IE MR T, TR eSS M iR/ NEM T2
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MC = (m® | Vg € G,m € M).

FRHEE M AE G i e B .
NENEE, MG, W®]— A, (EREAE R Re? e 352
R IE R T

Theorem 1.19 1% G A%, H & G 0§-F#. 7 L H 89 1EALF (normalizer)
N(H)={geG|gHg'=H}.

N N(H) & G t4F#, H % N(H) #) ERF#.
Proof (1) ¥HEE K x,y € N(H), i xHx™' = H,yHy™' = H, Il
x'"Hx =x7" (xHx™")x = H,
(xy)H(xy) ' =x (yHy ") x™' =xHx™' = H.
55 M x~!, xy € N(H), JiPA N(H) 72 G it 1HF.
(2) MAEEI x € N(H), g1 N(H) 158 LA
xHx' = H,

JITPA H /& N(H) BIERLFRE. ] DAE L N(H) 25 H /BRI G i KR8 Rl
Hi, % H<IG, M NH)=G o

IAEFATE B BT F IR B NE, A TIER R AT T DAE IE R RS S A B LT
B, AR N, F B AR B BRI 2R iR 2 A &, WHAEEM PR T2+
). AR ER M E LB
Definition 1.8 %55 N < G, it. G = {N%|g € G}. & X 'Te%E Na « Nb = aN « Nb = aNb = Nab. Jlj
G FEIiBHE (+) FHEH, H BN — A HHFRE G Xt N (iR, ic/E G = G/N.

|G|
TR G RABREE, i Lagrange EFI T4 |G/N| =[G : N] = —.

IN|
FA TR E B R I i — A 1

Theorem 1.20 (A.L.Cauchy) i G & —/4 pn M AR I8, b p T —AEH% WG H p WL,

I F p T #.
Proof % n ABCAAMNEE. 24 n =11, G 2 p BMERREE W G ig— M ESoTE2—1 p Broc, &3
JROT.

s EFEXT A phk(1 < k < n) BOSCHAERT, FUEXTBY A pn BIACHRE G @ PRASAT.
TE G T a # e. % plla |, %
la| = ps,
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M} |a®| = p, EPRRLSL.
wrptlal, % lal=m> 1,0 (m,p)=1HT
m | pn,
Wem | n. % N =(a), WHT G A,
IG/Nl=p -2, 1< 2 <n.
m m

T IHgEAs, # G/N A p Broc, AL —, %8 bN, H. b =r, W

(bNY = b'N = N,
M p | r. % r=pt, W |b'| = p. m]

Sebr b, 24 G IR ARSCHE, XA E BT AGE. AL AN FFEGA.

1.2.2 RENMIERBEFIY

— RIS, R AR R EB L, WIFRIZI I — AT (R AR 532 R AR SR [7] Fof i
SE R, DRI A [F] AL S

R R A7 T ] DATS- S ) A ) — e iy B o -
Theorem 1.21 % ¢ 7% G 3| G’ sy Ankdt, e 5 e’ 232 G 5 G 4934570, a € G, N

(1) ¢ ¥ G 04 45 Tk ) G’ #9427, BT d(e) = e';

(2) ¢ % a 9i% Tk F) ¢(a) B93E T, BF ¢ (a™') = (¢(a)) !,

(3) 3% n FAE—H4, N ¢ (a") = (¢(a)";

(4) o R |a| AR, 0 |¢(a)l|al.

Proof (1) [ e 5 ¢’ 43512 G 5 G’ (LT, FTbA
e - pe) =d(e) = p(e-e) = ple) - d(e),
M Hh 9 2o 15
e =¢(e),
HI ¢(e) b G BB T
(2) EEA TR
p(a)-¢(a')=¢(aa™") =d(e) =€ =¢(a)- (¢(a))”".

65 MM S HH 2 A%
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¢ (a™') = (¢(a))!
B¢ (a™') K ¢(a) A3,

(3) 24 n = 0 B,
¢ (a°) = p(e) =€’ = (¢(a))".
M > 0K,
p(a)=¢(a""a)=¢(a"") ¢(a) == (¢(a))" ' ¢(a) = (¢(a))".
W p < 0 R,

@) =¢((@)")=(g(a) " = (#@) " = (B@)"
4) & lal =r, W
(¢p(a))" =¢(a") =¢(e) =¢,

JiPA 1g(a)llla |. m
Theorem 1.22 % ¢ = #% G 3| G’ 09 Sk, H 5 K 53 % G 5 G’ vyF#, 0|

(1) p(H) & G’ 04T %%,

(2) o7 (K) & G 0T #;

(3) 4o R H % G 89 BT 8, N ¢(H) % ¢(G) by EHT 5%,

(4) =R K & G’ oy EAFE, W ¢~ (K) & G o9 EHT#E.

Proof (1) XTI hi hy € H, A hyhy' € H, IrPA
¢ (h) (¢ ()™ = ¢ () ¢ (hy') = ¢ (hih3') € $(H),

FIrbA ¢(H) & G' [ THE.
(2) XHERR a.b € ¢7'(K), F ¢(a), ¢(b) € K, ]

¢ (ab™') =¢(a)p (b') = ¢(a)p(b)™" € K,

TR ab™ € ¢71(K), FTPA ¢71(K) 22 G 1T
(3) H (1) 1 ¢(H) 2 ¢(G) T8 NAHMEER o € ¢(G),h € ¢(H), 5 a € G,h € H, i
¢(a) =a’,¢(h) =h, W aha' € H T2

ala™" =¢(a)p(h)($(a)™ = ¢p(a)p(h)¢ (a")

66 = ¢ (aha™') € ¢(H), FILA ¢(H) J& ¢(G) HIIEHLTHE.
@) i () A, ¢~ (K) 2 G 1 TRE. XHMEER a € G, h e ¢7'(K), W ¢(h) € K, Tiii K }& G’ fYIE
HTRE %
¢ (aha™) = p(a)p(h)p(a)™' € K.
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Ni]
aha™' € ¢7'(K),
JirbA ¢~ (K) 42 G HIIERLTHE. o
FETF U ) A S A B TR AT Se 0 S—SE 2Rl 5 LR 2 [ v e e RS R (A AR V.
Definition 1.9 i% o : G — H 2— LRI ZSHLSE, )

Kera:={gecG|g® =1y}

FRAE AR 2 [ S i %

G":={g" | g €G}
FRAEAE (R S BUR 1R 4R, FTPABRIE Ker @ < G, T G* < H.
Theorem 1.23 (Al XA EHE) -

(1) 424 G WY IEMTBE N, #3F B —A G 84 G/N 04 ukdt, #R1E% G 3| G/N b4 B KR 4.
2) 2 — Na:G— HAERLZu4. N Kera 2G, B G* = G/Ker a

Proof it K = ker a, % G/K = {gK | g € G}, {F G/K — G [FJkI}t
o:gK —g”
UL
Gk =K & gi'neK & (8/'¢)" =1y = g =gf
T2 o 22— Mg BRI E— MRS T2 G*=G/K m
XA EIEIFRRAT: #F G MFEBRTERE S F G G MdRe! EP it o G/Ker a —

G TR M.
A ZE LA R S H AR B 1

Example 1.3 ANHEKIE
a:Z—7Z,

a®“=a

SE WA IEREZ B R RIS, Ker a = nZ, T2 G EIIEREFE Z/nZ = Z,. A A Tn]
PARERRE n I3EE 2, 121 Z/nZ 19K

Example 1.4 Wff det : GL(n,C) — C* 2R R, B — DT85 7 FE M E M 1917
I 2w}
Ker(det) = {M € GL(n,C) | det(M) =1} = SL(n,C)

it SL(n,C) 42 GL(n,C) WIEHL T, I+ HA GL/SL = C*.
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Theorem 1.24 (45— P 1% ¢ 28 G 3|8 G t9— AR Ai%S, L ker ¢ CN 4G, N = ¢o(N),
)
G/N = G/N.

Proof A N 2G, X ¢ 2, N = o(N) 2G. Bi#ES
7:G/N — G/N,
xN — p(x)p(N)(Vx € G).

ME 7 2R G/N B G/N 1Al L.
(1) 7 2Bhi: 5 aN = bN(a,b € G), W a™'b € NALHT ¢ ZFEBRYS, i

¢ (a™") p(b) =p(a'b) € p(N) = N.

M @(a)N = @(b)N, B 7 32 G/N 3| G/N )B4},

(2) T 24T LB aN € G/N(a € G), WP ¢ )ZHFZS, 50 a € G ¢(a) = a. NTTTHE T ZF
aN g aN, B T 235,

3) T R HHF: B e(a)N = p(b)N, N

¢(a™'b) = ¢(a)'o(b) € N.
H o HFESH N = o(N), A c € N fif
¢ (a™'b) = p(c)

Al

varphi (c'a”'b) = ¢,
Hrpre jg2 G Bt T2 ¢ 'a™'b e kerp. fH/& kerp C N, it
a'b=c-c'a'beN.
MM aN = bN, Bl 7 2 5. I, 7 20U XE R RARTE 2 A
aN - bN = abN — ¢(ab)N = ¢(a)e(b)N = p(a)N - p(b)N,
W T IE G/N 2| G/N 1R F st Bt

G/N = G/N.

Theorem 1.25 (45 " RIKEM) 2 H A Gy F#, K A Gy ENFE N HNK % Hoy ENFERL

H/(H ﬂ K) = HK/K.



L2 IEMFRE. WRE. BERAS
Proof %
¢ :H— HK/K,
h — hK
(1) B4 ¢ 2 H 3| HK/K B4,
¢(h) = hK = hkK,

LA ¢ 52 H 3| HK /K 3B
(3) MAERLI b1, hy € H,

¢ (hihy) = (hihy) K = MK - oK = ¢ (hy) ¢ (hy),

FIrbA ¢ 52 H 3] HK/K (IR

4) [FZSHZ
kerg ={he H| ¢(h) =K}

={heH|hK =K}
:{heH|heK}:HﬂK
(5) H[RIZSEAE A, H N K =ker¢ 2y H WIEFLTHE, H

H/(H ﬂ K) = HK/K

1.2.3 )8 S

S8 JERH R RS2 R
Proof 1% G 2HHf, o 2—FESHY &5 G PHIEMFHH N Vg eG
= (§"H)* = (Hg")""
= gH(fl — Haf’lg
= H 2 G
=H ={e} or G*
=G e

@ AW G2 pn i, p B—EE, WM G A p Bt

17
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Proof Xf n /EIAGNE. 24 n=1 BFE5IE R IRINT.
PAEMRE n < k NS5 RGE.
(D) A —ADFHEH, p 1[G H]. W T

|G| = |H|[G : H], p | |H|

TRBESAHA p Broc, il G 4 p Biric.
) FMERFHEH, p £ [G : H] W E N(a,), 2t N(ay) 52 a; (IERE T WA IR 1i#,
T

Gl =Cl+ ) [G : N(a;]

i=1

# p | IC] T2 C W p Biroc. m

) e C R E

¢: x> x' (xeG)

& G 1 H RS EAY G 2 DUREE.
Proof B RIXFERIMLET S — A RUS. 2 H [, W) Va, b € G, ¢(ab) = (ab)™' =b~'a™!, L ¢(ab) =
p(a)p(b) =a™'b™', T2 G RBAHAE. K247 G RRHAE, W p(ab) =b'a™! =a'b™! = ¢(a)p(b),
T, B2 A . o

1 2 IER R IR A R IR

Bil: XTTACEETE Ay, FRATHNE: Ay WA LIER FHER A SRR Ky = Z/2 X Z/2. H Ky &
IEMTHE Z/2. TRIE T K BERL T8 Z/2 N2 Ay WIEREFHE.

1.3 A FkhE
1.3.1 [l

—A>G 2 G B S AR B FA, ] Aut(G) 78 G T A FABSRSEA. 3+
WATERE ERATE D B R IERA, HIRATAT A — L BAR A B A4, e G AR
JGEK a € G, WUff

o.(x) :=axa™, VxeG
FESLT—A G W H [F. Frax £ B A2 S0 S S 7E — i Mz 55 M e, FRVER B RS
#, 1C/F InnG.
InnG = {0’a |a€G, Vx G, og,(x) = axa‘l}
H R R BRI Y B [E A S 2 S R S S i S R AR, 43 BIRRAE B IR AN 1 )
Rt ARRFATHE AT AL,
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InnG < AutG

RAR—AVHER B FIARERZHE A S %, A8 B ARSAE N WS AR, ENTR E R

7 BEEHER.
Theorem 1.26 1% G = H Z HA#E, A G = H, N Aut(G) = Aut(H).
Proof H7T G = H, T&A— " [RHBL,

a: G- H

RN VB € Aut(G) % EmLEt

[ Aut(G) — Aut(H)

B — a/ﬁcfl

HERAVEE eBa™! Hiid—A~ H L E [F.

H 6565 H
H A4S 96 RIAE RSN, aBa™ B2 — 4 H LAY E A, A1 T ok RFRAE f 22— MsE )
XHRIT]. 2 aBa™ =afa™", WG =4, TH2 f 254 X T Vu € Aur(H) T

G- S HSHYS G
T2 o lpe 24 G EWARW, HFHEE f TS u. T2 f 20U 5 80E f SR
BHE, T2 f /2 Aut(G) 3| Aut(H) A [F]F4 B O

B MIATRERI, AR AR ENI H FARE—E AR, X2 AR FE ERAITH
S .

Example 1.5 CRFIREATHIN O R %8 G = {e}, H = Z,, EAIAFM, {HE [FEMH A
PRRCRIEE S

BT R — Lo i FH B A 56 E PR
Theorem 1.27 (A MM ESEEELMANM) N € G, a € AutG, % N* =N, N
@:Ng— Ng“
ARE GIN Eoy—/NaRM, RINFE o 5569 8 R #H.

Proof RIRXIE—YS, A VNg € G/N, 17(E g € G, iif% (¢) = g. (X o 2 AR
UERY) T2 (Ng')Y = Ng' = Ng. & SU@—ABYS, PN Ngtt = Ngg WA
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gr(gy) ' eN
=(g18;)* €N
:>g1g2_1 eEN
=Ng =Ng,
R 2 . AR 8 5 BhlE R, T2 2. o

Theorem 1.28 (N/C % ¥l) H < G, Ng(H)/Cs(H) B #F AwrG #5—A T #%.

Proof
Vg € Ng(H) = {g €eGlg 'Hg = H}

HRS Y. —A H B A [l 4

oy h— h® € AutG

TR RS
f i Ng(H) — Aut(H)
8§ 0y
AR Co(H) RSO, TR FASEATIAM, HEMHEL o

R ORIATOITE N B [FAGHE. T B FIRIET G rryICE, IR 5 i — & Z A %
R, FL EHATH

Theorem 1.29 InnG = G/C(G)
Proof & G F| InnG 13 [F] S, LA T C(G) 2 FESK, T & i [ A E H . O
AT DASEAS— AN E ALY 5B R N A R 5853 25
Corollary 1.2 % G # 3E 03285 08t, C(G) = {e}, InnG = G.
TRIATVEI T — LG WA R, AR DAR] H AR 2 2l ny R, 1 an: A A mHe— N 8
[F kg AN E [FA? —ASE AR B RS EA A XR? — MR EREFES S5 ER 8 FY
B2 R TIRTE IR B R, PR RE BT R R 065 T, SO AT 4.
o, AR E— HER B[RRI FATLAREEOINRE (Z, +) B, 2l € H A R A
fig: B f =2 Z WAL— B R, e HEEH 0 — 0. B 1 BUE f(1) = k. 8T Vx € Z,
J(x) = kx. i@, IR xo, f(x0) = kx = L i1 T k Flx #R B8, A ARER &k = 1.
L | AW E (R
fix)=x, xez
fHx)=—x, x€Z

TR B IR, 7T VA & e At v 2R BT, AT B B [RI A RS 29 SR 2R A F
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1.3.2 548t

FERT AT by b B 2 BB AR IR HE T

Definition 1.10 R G 25248, WHE Co = {e}, AutG = InnG.
Remark 1.1 f17E#1.29, Hi— M2 5E &R Y HAUY C = {e}, AutG = G.
FATAT MR e i1

Example 1.6 Sy /25247 1FA L0 |AutSs| < 6, FEH T C = {e}, T4 InnSs = S5.(Th1.29)
T2 [InnSs| = |S5] = 6. ULH] AutS; = InnSs. S35 EIRATAT DAY n # 6 B} S, B2 58 28

T RS T E SR

Theorem 1.30 % G & 3F 3t 225, N Aut(G) & 7 AF.

Proof KT, FAIEAC I = InnG, A = AutG. FA 18 = HAEH:
(1): Ca(l) = {e};

VE € Ca(l), o € 1,67 0pl = 0y, Vg € G. Hotpt o 2[RI HITH E X1 g F5 S H R WX
Vx € G, 3y €G, y¢ =x. T2

xTRE =yl = (gTlyg)E = yEoeE = x Tk

RAAGE] 71 0yé = oge, Bl 0 = sigmage. T o B—A G — T INFEMBLGE, T2 ¢ = g% Ml
=1, RIEFMY.

(2): ¥ @ € Aut(A), W) 19 = I; JLAL IS

(3): W @ € Aut(A), W @ € Inn(A); BLALETIE o

1.4 nlfigft
1.4.1 n[fRBRERE A SO B YE IR

515 FAMRIERIERL THEARTHE. BUEA — DR, — MR REA R S, (AER
FIHE R RE e St TR NS, A ARERIE ML AT R S, S50y, FRNTA T REER

A o 2 G — G, Im(0) BAHBKIE. X2 FSEAEI Im(0) = G/Ker(o), i Ker
= G IIERLTHD).
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Imo BXWHEE — o(x)o(y) = o(y)o(x), Vx,y €G
= o(yx 'y =¢, Vx,y e G
= xyx'y! € Kero, Vx,y e G

= {xyx_ly_l | Vx,y € G} C Kero
TR xyx~ 'y #HA RS E R Ll TRSER R, TR {ox 'y | Vx,y € G}
A IR A B T R S A L

Definition 1.11 F5 xyx~'y™" 32 x,y (LT, FrA 4 fn A4 U BEFR R 240 0 T, 5 G 194,
CAE G

G =< {xyx_ly_l | Vx,y € G} >
MDA, — DR SRR, HOBORN AT S e (X -5 O WA 5. AR e SCEZ0A

Corollary 1.3 :
(1) G X ¥# — G ={e}.
(2) AA&mkdto: G- G, LRSREZHHE = G CKero.
(3)G’' 2 G.
Proof FeATHIEH] 3) . Ve € G,z € G, gz87'2€ G, gzg™' € G'. T3¢ G’ 2 IEI 1. m|
Proposition 1.1 N < G, ] G/N =& %4 < G CN.
Proof % [EHMAFZ G — G/N, W N 2 FEEMZ, XHTSEFSTIHE T, T2h EiEe Q)

HIEES o

Remark 1.2 £l PUEMTRE N = G, W G/G' 1@ 5c#eftt, 1 Hid G i RIS RT#E.
TR ANREIR Y S S R

Definition 1.12 F% G /2 W] A, WIRAFAEIERAL k., (75 G = {e} ..

XA ARARIET 5 T PR B — BT REIR A W, FATA f(x) = 04E F _EARA T4 H.
Y f(x) 7E F LRI FORE2 vl it TRBNIEFESNR TIHE. BeBRINRESE L, &
RS PTRRE, DU ENTRY SRR A BALTC. S 1 20 n] e, FATHR 2R e i s A
HIEHANEH LB

G 2nlft = A G nyidle T rs)

G=G()EG1262|Z"'EGS={€}

HHE—A Gt /Gy # AR IR F Ny, T AR— SRS (GO}, % FRED B 22 B
6, I HE—MEE E—NIERTRE, GO /G AR R ORIATA DAEIX A 22 5
ZiNib
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Theorem 1.31 G & T f## — # G t9ib[&T# 5 7)

G=Go>G 2G> -G, ={e}
HFHEHE /N Gi/Gi & ZIFF.

Proof TATERIERFE 1, DEMAE EIHEZWH] 1. BT Go/Gi 25gifl, T/ G € G X
T G1/Gy @ATHAE, HE1 GP € (G1)' € Go. HA AT DAIEM] G' € Gp. T2 G € G, = {e}. Ut
W G 2 Al it o

TN X LR 7 5 T DAL
Theorem 1.32 =T f## 7% a4 £ — A~ F B o [5) K457 72 7T AEA%.
Corollary 1.4 T f# 04 W B2 7T #4049, B BB A AR AR 1%
XA ER O ERRAH
Theorem 1.33 N < G, 3% N 4o G/N #7527 fARE, W G A% 7 ARt
Proof %8 G — G/N (1 H AW RSB . WIARZS Z) Bk

n(G’) = (G/NY

ipike)
7(G® =x((G")) = (x(G))?

PE—2 A ATE AT ABEH]
7(GY) = (x(G)"

FRAFAER Ak, n(G® = (n(G)* = N. HEFHERER, 5 G™ C N. XHF N @nlfift, 171
[.GHWD c NO = (e}, {5iH] G & A fiRHE. o

Theorem 1.34 3f 5 3% F B A7 T R+ fF A%

Proof miT2HfE, T2FMRAME CuidF e, T GAXH, WHISHARR G XM G
RN FREUIAR G, AHfEE e. T2 G Al . o

Corollary 1.5 3f =4 7T f# % T & £ 57
ROFREAT, AR e, HABMOR AT B k.
Theorem 1.35 3% Yy B 47 & =T AL 8%

BEUERARIA 255 1T, M0 5E BE— 0 5 R AT AR AR S e, BRI A T e 4k
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1.4.2 BblE1-RE 20— R iE Ak i

FETTE B AT BB 1 R 2 7 n] R, 4R AT R A AT RS 2 A . PR A4
JTEALERE L.
Definition 1.13 £ G (1J— & T REF 4 -

G=Gy=2G, >G> --->G, ={e}
FRVER G B IEFL RS, Hpied
GO/GI, o 'Gr—l/Gr

FRAE A, Hod SR i oy B BRI K 3

FRE: G HKIE M TR, JE— R — AN A TRE, AR G WM TR 30, I
HLTBETE BT RER %Eﬂ?ﬁ123
AR A4 MR ML TRES], BUEAF # G R, T

G=Go2 G, ={e}
1 G AZEEE, BATATAFER B A ER TR, A AR IERL A2 B8, e fRl v 4k~

W A FNTEORAERL THEP T IC R I, AAM TAHREE S, HAMKE—E/NT Gl FHE
PElE, — MRS A ME—.

Definition 1.14 #f G R IEML-FREFI QAL - PR B8, IPAFE G — 1A
1.
Example 1.7 AZ458E Ay G =AG Y] ar Vo= {(1), (12)(34), (13)(24), (14)(23)}, WAy

A, >V [(12)(34)] = {1}

Ay =V [(13)(24)] = {1}

Ay Ve [(14)(23)] = {1}

B A A R G Y7 AR EEN
Theorem 1.36 -/ PREE#RA £V % A R FE 7

Proof 1% G A, W THIKEASEE G BB AWTE G iR % I H = T K AR KL
THES, BATEX AR — G S AR EMTI, SR A Gi/Gin AR, TRH
AARFILIERL T8 H/ G /H\EP H 2 G 5% G WARFJLIERL 1. T2 HAlHm AFRATHY U IE M
TR, SRR, X SHERTE. TRmKARKIEA TS —E 2 G s, o
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Corollary 1.6 7 [RBE % 7T fd#% 5 B AL S G2 — A8 [0y T #45)
G=Gy=2G >G> --->G, ={e}
Hop o d—/AN B T RFLAAR A TRV s 8 B 2 Z N PR30

FERTTTAY Ay (1= A HEA R, ATib K B B S BAT MR B, 3052 ph I T B PRAIE
HUE

Theorem 1.37 (Jordan-Holder 5gBl) A2 G M EE AN E L g6 m B2 LR K EZ,
AR TR AR A XBexd, 1243 ey BT EER 4.

Proof WEWZ:7% 4 e it U4 P66. o

1.4.2.1 )5 R S %
S N =S, RS, SE
IR AE N = S HE, AL = A,
S5 GE S, N > 5 SRR TR
SIREDY: ER N > 5, A, AT

L5 ATPRBEIIS5H
1.5.1 BT ELB

¥ G FH 2B, R ZEEE, £ G xH FHE
(81, h1)(g2. h2) == (8182, hihy)

XJ2 (GXH,GxHZ| G xH WL 5 8IEEIIZE T G xH 2 REH. FRE2 G M H I
LB,
Remark 1.3 X T4 BRZAHERERL, FRATHAT DAXAEE L, HIEBREZABIATT. AR E
WIS B AR, T AFEIX BLET AN .

HARMIM SN G 22—, H K 2ENHAN TR AT ARMER G = Hx K ? NE %
BT R
Theorem 1.38 G = H x K % HiX % F &) =& .

(1)G = HK;

(2) HNK = {e};
(3) H Pty 55—/ 7%k Fo K #9303k,
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Proof 75 [EWLT

oc: HxK -G
(h, k) — hk.

oI — G ILRgEF IR g =hk.he H ke K
— G =HK
B &= hiki = ko JHER R = hy, ki =k,
= ' 'hy = kok ' AIHEH R = By kg = ko
= H( K ={e}
o[(hi, k1) (ha, ky) = o (hy, ki)o (ha, ky),Vh; € H, k; € K
&= HWWgNILRY K PR IeR 5.

1.5.2 A7RR n[HREEIILS

Definition 1.15 % n 2 — N 1FE %
(1) #5 n W[ FIRIE
n=p; - p;Ys
Ho pe BB, RERBLES, o > L BATEAR {p, - . p&} 72 n i— 905141

(2) # n AR AE
n=nhy-h,

/H\qj hilhi+la Jr!]ﬁﬁ( {hl,"' ,hr} XEé n E/J*/I\z:@%gﬂ-

Theorem 1.39 ()25 T-&B) i£ G =R FRFT N &, EHUsAhn, W GTAF1E
G =Cpn XX Cpon

Hb {pr, - p8 ) & n A MER T (ZRRREARGIE—)

Mg GRAMRMNE, T2 GuAlARZS iR AE M. ik G A—MEROUE W, Hf&fa o4
JCER. A7 G RS -1 ATCREARELL AW, WFR WM oC s 3 T4 BRI A B M
Jutk, AEOTEE N DA, (HA —RR TR L TR eI EFA T AT DA AR IR i SR B
PEIAZNIE. BeAh, AT REIE AT BR AT 22 6 p-HiF P 45100, IR AR B 1.38F0 Sylow 2f—7E
B, RIEAT DAABE L A FR AT 2 et G T
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Proof FATE FULHI I E BEXH AT BR W] 224 p-#E P OMGL. X R[5 p-fif P A/ NE OCR S A 10
Edhe /@ R (USHIRS

n=1 I}, It Abel p-FEE R, S5ERAL.

B n=r-1 0, MG, FIESRIE n=r KB 5 P 2Kk p' (BT DR p-BE, B/ INVE
JUEREA r IR, O TN RS, FA1A A P A

P=<a>xP,, a€eP, PT<P

HH PR/ NEBOTE S =1 ADTTR. ARERENXFER o # Pyt HA R IETE T, TR
MEREFER ARG, ARSI EE P & o DITRIBNEoTE .

a5 BR1.38, HIEFATHN a F1 Py W25 2 -

() <a>N Pr={e}

2) P=<a > X Py;

(3) < a > Fl P, HICER A DMER AT

FIEM XA

M= {(j]a' o ’jr) |x{l “_xir =e, {xla"' 9xr}7~EéP E(J_‘/l\*&/]\ﬁéﬁkﬁﬁ}

M’ e R A
M,:{min{jla"'9jr} | (jla""jr)€M9 ji>0}
T M AR/ PIEREL, ACE me A P B IMVEROTE {x, - - x ) 15

x?"xf coexli=e (1)

BANWIE m | ji, 2<i<r. BN, PAi=2H0: jo=qgim+uy, 0<ur, <m
e = (xxP)"xy? o xhr

Ehﬂ: {xlxgzsxb e ,xr} &XEEI: P E[/‘JQ/I\*&/J\EEJ&fl:%, ﬂ:‘fEIE: (m,l/lz, e >jr) € M’ U € M/’ EE:J: m 7?3
M’ /N, TR up = 0. BTG m | ji, 2 <i <.
AL (1) f6AE

(xx§ - xI)" =e

FAldma = (x> ---x), Pr=<xp,-,%.
FATTAT DA IE -
()<a>P =P
(2) < a > F1 P, PICA LA
B #H <a>NPi=y,W3Is<ma*=x7---xI", TR
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T s € M, X5 m IR K, SR
<a> ﬂPl = {e}.

MM G =< a > xP,. AKX
P] EcpazX"'char

H

<a>=Cyy

T
G =Cpo X+ X Cpa.

Hftag + - +a, =1
TR e p-BEEW 7458 IE . Fh T G 1 DM #IE Sylow-p TREKTRAL, Sylow-p
TREATAGME, T2 PRARIE.
Theorem 1.40 (ANVERF FE 8l 12 G 2 AR N RE, LHNdchn, W GTART1E
G=Cp X+ XCp,
L {hy, - b} AL E T

Theorem 1.41 F— AN TR N REAG 1R F207E—, MAFRMT N RER MY AL CE —

e B T4
Proof WERHA S Z:, BAAS 4 i ACEL P93, O
1.6 #4510

1.6.1 n JTX BB

Definition 1.16 :
(D) 57— A Q H B4 DU HBIEGICE Sa. So & — M, -E Q _Er4a 8.
(2) Flny 4 Q BECABRES, FrEA B —A B OUHE — A8, I So FRIEE n JOXHR
i TRt (E

—/NnJCE o i - a;, iBfE

g =
apap - ay,
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AR X B IEA n! A4S, T2 1S.] = nl.
Sn FALTE PN B AN TSR 15 R O RIEZEAT Y, DA Sa A B o, 7 . 35

1234 1234
o= s T= .
2341 4321

1234
Ll (

i)

or=(4321|=

V)
1432

1234
1432)°

1234
LIl
To=(2341|= (
LIl
3214
TATBEFTPAH M8 ) U5 B84 g, D L o, B 1 - 2,293,344 1, T
A AE o B id B

1234
3214/

c=(1 2 3 4

Kb, @) X o, Bl 1 = 4,4 1,25 3,3 - 2, T2 M ¢t G AERX: 7 = (14)(23).
H G | R A

TSR n T o iy BUR i, 38 b W i, A G WO, R G WU, HEH o R
FEHARICEANE, WAFR o —A> r-8i (r— cycle), TR A8, 1M ((iiais - - - i), WA PAE
B (it - - - ipoyipiy), R FTPAB AL (iaiy - - - ipoyipiyin), SE55. FRHIHD, 2 - SAARAR e, fE U 10
(D). ISR AR B2 A AL TR, IBAFREATAMAL (disjoint).

Bian, Ss v, (134) 5 (25) 2 AFHAS A~ Fe 4. el (134) 25) 21 3,2 5,3 - 4,4
1,502, M 25 (134 B2 1> 3,2> 5,3 4,4 1,5 2. [H}t, (134) (25) = (25)(134).
R BT ERT AR IS AN FE A A AR . PRI IR AR 21 ASAHAS R A SR 40 % e i) J nf 22
iy
M @) X o, v BRI R, o5 T kg

Theorem 1.42 S, 1+ —3F #1570 04 H FARAE &7 A, — 2L 79 79 AR A9 30 Se An, FF IR T #04%
B9 RPN, R ik rE—8Y.

Proof %o €S, Ho+ (). TREQ={12,--,n} PELH A i 1§ o (i) #i1. &

o (i) =i, o (id) =13,
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HIT QI = n, HIAEA RIS R L SRIIR TRER. & i 2% — NS TR =L
ﬁ?}ia &L ir = ijaj <r. {Eilm ] > 17 Ehﬂ: (o (ir—l) = ir7 g (ij—l) = ijv tht

o) =i =i =0 ().
1 LW o fERAS
o (i) =002 (6)) .

Bl i,y =ijo. X5 0, PG, FL j = LA i =i TSN o = (Lia- -+ i) FE
Q\ {i1, iz, -+ i} PEE LRSI, (HR[153] o FIR P AF R F e e f i =1

g =010 0.

ME— PRI o A — D FR P ISR AR T o = iy - - - 1 ARHUE o TSIt R
a, WAE o1, 02, -+, o0 PAFAEME—H) 03, 45 ou(a) # a. [ABE £E 71,1, 7 FAFAEME—RY 7,
ia) # a. FATH

o/ (a) =c™(a) =1"(a), m=0,1,2,---.
o = T BRELXFERITHE, W15 r = s, HFHEESHS 1o, MIRITE, B o = T, =
1,2, ¢ AT PE—H J8T O

BUAEXT TRl Sa HPEY o, 7, FE TR S A ORMOTA:
ot = (1234)(14)(23) = (1)(24)(3) = (24),
To = (14)(23)(1234) = (13)(2)(4) = (13).
B _EPEUIHE, fEa B SR AL R A
BAEFATR S — LRI TC. X T o, AL R ER I

L [1234
4123

): (1432).

5o MR o = (1234) R, 504 a1 F 4518
(iria -+ ipyiy) ™ = (irdpipoy -+ - 02) .
WEBRAR s BT
(iriy -+ dpaiy) (ndpip_y -2 i2) = (1)) (B2) -+ - (i21) (Br) s
(iyipip_y - -ip) (g - - ipoyiy) = (i1) (02) - -+ (Gr21) (i) s
A it
(iviy -+ ipo1iy) ™ = (iiplpy -+ 2) -

I BB AR NG



1.6 BB 31
(1234) = (14)(13)(12).
— e, W] DA UE T U
(iriais - - i) = (idy) (nipo1) - -+ (i133) (i1d2) -
P A EML42, A (1) = (12)(12), 1%
Corollary 1.7 S, ¥ £ —/A~ B3 AR VA fom i — 2 ad 3 0h e An.
TR R E IR O AR, HRR 7 2R ME—, I FLIX S At 52 Bl

(134) = (14)(13),
(134) = (12)(34)(24)(12).

M ESE L 48 (134) Fom B AR, X n B2 B s A R idgsie:
Proposition 1.2 S, ¥ —/~ F#: k7 AT a9 f 47, L PN Fas B g ER ARG ke,
575X L%k,
Proof (£l o € S,, X
( 12 n )
g = .
aya -+ a,
W) o $8 n JCHEF 12 - - - n A8 n JCHED aras - - - a,. WTRAUERH, 8 n JTHES 12---n B ara, - - - a,

A PAZE L — AR B XS B, H H O S n ot avas - - a AR AT BT FIBE o W]
PAZER IS — 28X R S B, b X i o o AR B duE, 55 E K. o

T b, A5
USRS BT DA RS SRR, AR, 5 PR3 B, n] DAUER 8 E
SRS ESAE, FRVE n JLEHE, L1 A,

162 SIERARE
S+ i

(1) Sn = <{(12)7 (23)’ ) (l’l - Ln)}>
) S, =< {(12), (12---n)} >.



Chapter 2
R SEANIH(EIVY S N T3

2.1 #EFEHI B sylow sz Pt
2.1.1 B
5155 7E Galois By AR AT R, 2% 8 S BR D BB BREMIER , XAMME
MR TIRZ B X RN, T2IA05IABEER LS.
Definition 2.1 G & — M, Q2 PIESES, AW
o: GXxQ—>Q
(a,x) > x*°
2
x(@b) = (x")¢, Va,b e G,Vx € Q;
e(x) =x, VxeQ
A28 G 1E Q FA—MER.

HNVE2BMF— RN IE? Ehs b, 37 GHE Q A MM, WiEWER—1 G Hioc
a € GHXIN T Q LM— WU do. BT dadbar = b = la, YL oo R, JEiTRE— DI T
SR EE D ICREA Y T Q ER)— A, KRR AR B AR I e AT LR RELE .
FSL EBATAT A S — 2P IR -

Proposition 2.1 1% G £ %4 Q LA —AMEA, WAL —AFEESokd ¢.

¢:G— Sq

ar— ¢,

Hb g, (x) =x BB G P UE a £ x € Q Faylk

32



2.1 BEYER K sylow E3 33

TERISHLYST ¢ NIFRAEX N EER W, RATH
a € GEXMEMMYE — aecKerg
— ¢a = 19
= ¢ (x)=x, VxeQ
= x“=x, VxeQ
24 Kerg = {e} B, FRXAERH M. BHEZS ¢ : G — So /& RS, AT AL A 2.1 st
K. BP: AHEG B Q AR So A — RIS, W GHEQ EA—MMEH.
TS E RO REE
1.
GXG—->G
(a,x) — ax
BRI G £ G LEH, #MEHFGHE G EAFR. T ax =x, Vx € G & a =¢, T2
Kerg = {e}, Y/ FRAE 2SR, T ¢ : G — So BB, G =1Im¢ < Sg. TREATAT
FEH
Theorem 2.1 (Cayley 5ZBl) 155 —ANBFARE M) T 3 — AT 4088, 25 A RBE M T E—/A T8
2.

GxXxG—-G

(a,x) — axa™"

FRAESEHE/E, A EREIE 2 G 2] G i A R — XU
1 G e LR R i 45 th— A Rl o). Fed 1

x~y & daeGx“=y VYx,yeQ
AT PATIE"~" S 8 & 2R, T AT DASIE I35 9 B2 00 43t A A2 -
Vx e Q,x={yeQly ~x}

= {x%a € G}
=G(x)

FANHEAE x B0 G (o) AR x 19 G-BUE. x (19 G-HuEpie x 7EHE G BFE M T RESIE M Br
A RIES. K5 M EPUE E2 AL AME. T2 Q i AEEA S HIERIF.

Q= 0 G(x;)
i=1
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FANIFR {x} 2 Q B G-HUBEREENEAR.
THEATT—APUER R, R x 7ERE G /T BERI Ik SRR
FAVHHEAS T Va, b € G, x,y € Qx =x" = x" = x. FRBNHEXFN G (1 T4

G, ={g€G|x® =x}
A ABIEX 2 —A> G TR, FRER x BRRE T8 x MEE TREFPRITEAENAE x BARFR x A

22 AR LARPRIRA T v] LASS R8T
IG(x0)| =[G : G«]

F RO IERRY, X hT

b

x#x0 = ab”' ¢G,

& aG, # bG,

AR x AN EOV RN E G 7 G NREEE L. TREAIEN T

Theorem 2.2 (PLiti-fa& Bl 2 G £ R4 Q LA —AERA, M FVreQ
IG(x)| =[G : G.]

Corollary 2.1 3} THIRBE G, % G EELE Q LH—AER, RaVxeQH

IG(x)| = 161
|G,

M HiE K AR G a9 ay B T

Remark 2.1 {15 X5 G(x) fl G, A2 Q (T4, 30K x € Q7EREM T RERIBMICRMAES,
Ja#E R G T4, o8 x IRGE THE.

FATAT AR BE A0z I 2E R B, X IRHErE AR G-3aE ) 7 w5 214 FRAF 1 05 R
G| = |Cq| + Z |G (xi)| = [Col + 2, [G - Co ()]
Hrr G(x) 72 x itk
TR ARFATHEIE Q F GHUEE.

Definition 2.2 7 G 7£ Q FR1EH R —4&HHE, HIXTT Vx,y € Q, 3g € G, flifg y = x8. HFAFK G
1E Q _FWERLIBN. IR Q 21 G — A 5F ik 251

AEZIE, SRR G EARES Q FHERA r &8, WA Q1 G ER
{xi, - Lx ), iR

Q= O G(x;)
i=1
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TR

Gl
|

9= 2,1G0)1= 2, 15
BCRREAT, 4y TR — 508, WA Gl = |Gyl Bl TRBE—F.

X Fly T HE e JaeG,y=x°
ngGy,ygzy:x“gzxa

aga']

= X =X

= aga”' € G,

= aG,a™' CG,.

KR LAMEE] a7'Gea € Gy, B G = a7 'Gya. TRIEATIEH T
Proposition 2.2 G £ Q LA —AMEA, ME—4 G-#uid bay s, ©Ne9dae TR Z ke, Rk
X AT TR A I SAE .
HIAE, G, T TR R E TR A2
GG (x)| = |Gl (HBLEFE TER)

Bir—, Frfy Q HITRIERE TREB AR 2

r

DU1G = Y 1GE)IG, | = rIG]

xeQ i=1

HT K, BAVHFEA T —MIER Zica |Gyl
R GxQMTHES ={(g. ) =x}. M

181 =>"1G.| =rlGI.

xeQ

Ji—HTH, AEVgeG, it F(g) :={xeQxs=x}, N

NESWAG!

geG
T
rIGl = > IF(g)]
geG
! F
r—@; (9)]

Xl 441 Burside 5| 4.
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Theorem 2.3 (Burside i) *F T HIRE G, AREQ, Q£ GoylkA TH r £Had, N

1
r= g P @l

geG

AL T AL BRI B —FEIL, 45 3x € Q, Vg € G, x¥ =x, AR x 28 G IEHATRIA
i, DA Qo LA A B4 k.

Proposition 2.3 p-# G £ ATRE Q L AR, N
12| = [Q[ (mod p)

Proof
12l = 10| + > G (x:)]

=1
Gl ‘ )

HT 1G(x)| = m, TR G ()| &8 p Bk, Wi

Q| = €| (mod p).

Rrot Ay, AR ILEEVE A b, AT AR |Gl = |Z(G)| (mod p). iX k& Fi1.16.
KPR, AL —ADFEEN E
Theorem 2.4 (Frattini igl) Z G/EREQ L, F#ELGaA—NTHN, THEQ LERAREE
ey, N
G=G,N Vael

Proof Yo € Q, ¥g € G.a® = B. T N B8, TREFEREN, " =B,a%" =a, gn”' € G,,.
TR g=gn"'n= G =G,N. 0

2.1.2 sylow Bt

Hiwi: Larange sEUSH, A RBEAT— TR B @R Bl 1, REANENS
FIERXAE M G B Gl AT d, @85 —EA d Brig THE. XTI R AR08 2,
AR5 ) Xt T — O e s B IS FRATTAT S -

Example 2.1 [Aq] =41, {H Ay U 26, 3B 22 Br78E, JC 6 By T4E.
A TALIRA ISR 5 p 2 IGI WRE T, 2E—EH p* Br 7.

BANEXIHRE FE: |Gl = p'm, p RFEL, (m,p) = LXIT 1 <k <1 R2BE—EH p* BrTHE?

B HE G pf B T HE—E R G Y pF TR TRIENMIA G 1y p* BRI, Ay
ZEES Q. %18 GAE Q BRI



2.1 T K sylow i Bl 37
VgeG, A= {al,--- ,dpk} €Q, gA = {gal,--- ,gapk}
24 Ga (ARITEE THD) Wz — 1 G THE T Vae A, Gaa CA, T2
|Gal = |G aal < |A| = p*

WU, WERMAFTERB A Ga, W [Gal 2 p* BV SEEEH 5, B Ga, W2
PG4 HHTDA.
T
|G| = |GallG(A)]

TRA PHIGAL B2 p' ™ H1G(A)]. TREMER—D G(A), p' 11G(A)].
Fefr1A8 2

Q| = Z IG(A))]

TRA p QL AT TR A A p' T G (A
FLL,
nn—1)---(n-p<+1)
pr(p*=1) - (p* = pk+1)
BTG n = j A p* = j. v j =p't, (p.t') = LIAPA

k

|Q| :C5 =

n—j=p'(p-j)

pr—j=p(p"=j
FRCY P, BLH p iy p!= AT B pl ey € = Q) F RN E , A G (A,
PR HIG(ADLL pMIIG AL 1G o, | = PF. BATEARE] T ER A p* B,
Y e At
Theorem 2.5 (Sylow 45— P) X G o4Mrn=p'm, b p 2 EHK, (m,p)=1L WxTF 1<k <, &
G P A p* T8, 3L p! BT EAANARIE G 09 Sylow p- T-BE.
PAEFRATI NG , 5 —A p! W FRE, HA S ph, 1 < k < T FRE, A2 itk A& ph 1<k <1
MrrRE, Bh S TH—14 p' BrrEehig?
B E—A> Sylow-p FHE P, ZS LA P 38 FREERZ G 19 Sylow-p T T=2FA]
HEUH, T2 p" Br A H, —E&T Py 8e R,
H4F PRydt#ii ¥ — JaeG, HCaPa™!
& JaeG,a'HaCP
— JaeG,VheH, a'haeP
< Jae€G,VYheH, (ha)P=aP
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TRINF B HIEES G/P LA FRAEH
¢: Hx(G/P)— (G/P)
(h,gP) — (hg)P

N T UETRTE @ fFFAENE, FATAFUEHIEX N AR A G A 2T
M H 2 p-fif, Hh2.3

1G]
1] = [(G/P)| = o 0 (mod p)

TRAZFEEIESS, W] Ja e G, H C a™'Pa, IETHA Sylow-p T Rl & = 1, FAr 15
FN755) Sylow-p T HEHR 2 ILHERY. X2 -

Theorem 2.6 (Sylow 45 Pl X Ga4Mrn=p'm, b p &K, (m,p)=1L NxFF 1 <k <[, 1+
& pF TR, A AT XA Sylow p-FBEP. 45500, BA Sylow p-T B % £ 4und.
Corollary 2.2 7 Fk# G &9 Sylow p-T# 2 EAFH L BIXY G F XA —A Sylow p-T#.

Proof B G ¥)—> Sylow p-7# P. 1T Va € G, a 'Pa j2—> Sylow p- T}, #fta'Pa=P =
aP = Pa, {{t P Jg IEHLTHE. D2V BE o

FARMFANTI SR, WAK—A Sylow p-THEREL?
iy Q = {Py,---, P} 2T Sylow p-FHEEEG. Hani2.3, JATAT A 1E p-HEAITEIE . 5
HAARHR % 8 Pr (Remark: iX 2 (L7381~ Sylow p-T4). ALUEHEIEH

¢: P xQ—Q
(a,P;)) v a'Pia
FATWFFE B E IR Bl
0eQ) < a'Qa=0, VaeP
&= a € Ng(Q), Ya € P,
& P, S Ng(Q)
2R Pi,Q #JE No(Q) 19 Sylow-p T#E, - H Q < No(Q), T2t EHERHL P = Q. ik
Qo ={P1}

T2 Hi 2.3
r=|Q| =1 (mod p).

IeAh Py AE G hIHHETREI AN r = [G : No(P)] | |G| = p'm, T52& rlm. &5 F3RATIEM T
Theorem 2.7 (Sylow 5 = Bl) G ¥ Sylow p--FE YA F r, i# 2
r =1 (mod p)

|G| = p'm, (m,p) =1, N r|m.



2.1 FEAEH I sylow 53
2.1.3 28 RS
S G 76 Q FITEIREHI0, N < G, IEW N 7F Q _Fius—rEK.

Proof {FHUN 7E Q bW &8

N(x)={x"|n e N}
N(y) ={y"|n € N}

T G REEN), TRAAEg € G, x* =y I T N RIEHE, T/ gNg™' = N. A

N(x) = {xg"g" lgng~" € N}
= e e N
={yine N
RIS

o :N(x)— N(y)

ng™! n
Yy ey

FEAHEAERE— R, TRATIE K.

39

O

S8 AR G ABSERETE @ |, A2 G RYSCHTRE, HAE Q FA%id. IEW] Co(A) = A.

Proof T A B2%#, T2 A CCo(A). MERAUFA KA.
# b e Cs(A), H Frattin 1524,

VYa € Q,3g0 € G, ap € A, b =gpag

T AL, T2 VB eQ, Ja € A, (i B =a. ILIS

= ba;' € Ker¢

=b=ap€A
TR AL KA
S8 U] 7T e R IR
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Proof i Sylow 55—, G H—EGWECH 7T HANMECH 11 78 &%
ry = BYECH T TR
ry = Fjl\ik&jﬂ 11 E@%ﬁﬁ
ey Sylow 55 = ¢ P
r;=1 (modT)
ry | 11
FALry = 1 AT = LT G i) 7 BE AT 6.4, 1T BIERA 104, 1BE 14 f
10+1+7<77

i G g ARERAL R AEI & 7, 11,77, ifi—EA 77 Broc, dEi G 2 JEEE. o

2.2 Sylow EHRAE v i fE . P-BE LR H

Recall 1: —/NMEEFRAE p-Hf, #IHLITEITTRMHE S p MR & G 26 WEE, WX%ENT G
HIT S p 5 %

Recall 2: AT N <G FRNEGHETHE, HNCcGFKRNZGHWHETE

Recall 3: — M THE H, 5 H Y00 734 [G : No(H)] 1

FTEFRATRMFIT p-HEA AT fE. AT, AR p-HEER 2 ] iR

Theorem 2.8 74 [ p-B##R & T 4 #%.

Proof B |G| = p', FAVF L AFIHEGN. 24 1 = O, S5 RARBGL. BB [ < n INERINL, BE
= n i AFATRETE G IR —DIEM p'" BYRE P, IR Al AN RBE P FI G/ P #b 2 I A

T2 G W2l f#RE. Tk P AT R [ BRAHIE. T2 p-TEER 2 nl . O
Lemma 2l G L HIREE, PR Guoyp-F8, 2R Sylowp-F#, N Pc Ng(P). #t—¥%, #P &
|G|

G W9m K FE, N PEENTFE, 8 |P|=7~

Proof %} G YEXLUS 570 i

G= Ule-P

k
i=1

1P|
BE—RUESE, ATAMEYE ny = [P - PY (N P] = PP p* > P IAEEEMIE. T2, GH]

PAAMBAE ny + -+ + i = [G 2 P] ANEFSEERIIE. BT pl[G : P, 3 HAE—4 Px;P=P,n; =1, T4
WA F A n; = L YEHIFETE X,




2.2 Sylow SEFIAETTAREE. P-THE LR T 41
P(\P=P, PY=P

:‘F‘xEéx]' S Ng(P), X; ¢ P, /‘}\ﬁlﬁ P C NG(P)
H1T P < No(P), th PR YE, G = Na(P) , BEHIHIZIERLTH#F. o

Remark 2.2 TR p' Bri p-BE G, HATE p'~' Br FRERWCR T3, JEm 2158013 X at
T T FSEBRAIERY.

Theorem 2.9 pg %% G =& T fg#E. 1P p.q = ZH.

Proof Wikt p < g, W Sylow #—E BT HA Sylow ¢- 7 Q. Q EFIfff, T2 Fki RN
Q2 IE AL THERIT]. X G 1 Q WLHE i, st Q A ng MILHER. i Sylow 25 —E B

G| G|

<—<p
NGyl ~ 10|

ng =1 (mod q), ng =
TR ng =1, i Sylow 55/ HH Q RIEMTHE, T/ G/Q RFilE|G/Q| = p ZulfiRlE, Mifi G
& 1] . O
Rk
Theorem 2.10 p®q W% G & T A, k¥ p.g R HEH, o FELH.

Proof # P 12 G 1fy Sylow p-TBE, % P2 G (WIEHLTRE, W& BLAHIE. 75 W% % P () Fi e 640 T
1, HIETH Sylow p-T-RE:

p17”' 7pn],’
" G| - \
HAVE np = ——— =g TRV ANE Irf IEHLFHEAE:
ING (Pl
Py, .P,
T L5

@) #ZXT i # j, PiN Py ={e}. Wi UL, P 605 (p* — Dg + 1 NITE. AR T ¢ - 1 NJT
FAOEHE BT G m 1 qBr 78, q THA p THEAZH, TRXFHFN q THAA—
A, TR q TREZIEMD, Iah q TR, q THOTRATE, * G lfg.

() A PiOP; > LEE # j, 15 [POP;| K. 2 PiNP; =D. T D < P, T7&
D < Np,(D)=H; <P, 1T D <P;, T/& D <Np(D)=H; <P; iXiH H << H;,H; >=T.

D) #5 T & p- T8, WAEHE G 1) Sylow p-T#E P flif5 T < Pr, Wit Pk NPy > H; > D = Py = P,
[FH Py = P; = P; = P;, 7 )&, T2 HEE I 2).

2)|T|=p'q. % Q& T q¥r¥#E. WTLAIEH] G = QP;, & N=D% W N < G,N & G [WE T
#, Bk T O

XA E A AT HE)
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Theorem 2.11 (Burnside) p, g % %3, a,b & E%%, N pq® WrEEL H T HEEE
TEX BIRAINEZUERT, DA T RR B AL
Theorem 2.12 (Feit-Thompson) 4 ¥y 54 4 =T fiL 5%

S RE FHIER G I8 150 BT, — il o 1] ot s 2.
B B H, FATRIPAUERA

Theorem 2.13 |G| = 2n, 39 n 244k, N G & 7T if#%
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Chapter 3
Pel it B A R 2

3.1 PR A E X
3.1.1 P2 X

Definition 3.1 :

(1) complement: —A~EFYHMNEEAH TELE V(G) , PIASTISAHSE 24 HACUTE G HAAHARS-2)
H 1A,

(2) clique: 2 G J—P5ee 1K,

(3) independent set: Z—4~ V(G) (T4, HApgTi S pipi A FHER;

(4) self-complementary: G FRIER HAMY, RS FM T & %A,

(5) decomposition: —A~E|f /g e H—4 1 &l, &4 G Wlth RELh—FETBH

i/

(6) H-free:G Fi{E 2 H-free 3512 H %A induce subgraph [+ H.
3.1.2 1K
Definition 3.2 :

(D) FRY =& X WFE, 24 HALY V(Y)SV(X), E(Y)CEX);

(2) FHA VY)=VX), MFR Y & X 1948k 1Bl 5% %2 8 1Pl (spanning subgraph);

(3) 7% VY) BIPRHANTI S AHSR 2 BACH EATZER X AR, WY 2 X /915 S 1B (induce sub-
graph);

A IR SR B TC R A —HE, (E— DA AT 5 — A B 718, FA TR W AR A A2 5 —4
BT 1. A CIRATAT AT th, AT T A I R 1] G A2y, AIMERAT— A SCHET 1AL

45
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3 R EAMRS

FE e, WS T BN LA G — e KR, W A I BR— 28 mi DA B[R] i2% 5 R IR, SR 3RAT—

3.1.3 Graph library

ARATEAES A LT WA I 24 B, PAEAE .

1: trangle 4~ i |2 K.

trangle
2: claw A F2 1,3-584 K K 3
claw
3:kite &KJfi Fi2 Ky —e
kite
3.2 I
T FF A — i T XS, BT SR S A E L
Definition 3.3 :
() dg(v) Fm v TEE G e, FRAETI v 1 (degree).
(2) 5(G) F7 G MTKTUAIE, (G) F G HIR NI JE.

3) # 4(G) = 6(G) = k, WFK G J2& k-1EMIT.
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4) e(G) Fr G PIIRIHE.

Theorem 3.1 :
(1) 6% —AH G, &RINK
Z d(v) = 2¢(G).

veV(G)
(2) —/NH n ANTR G B k-0 B nk/2 4.

Definition 3.4 (n 4i: 7. Jj & (n-dimensional cube or hypercube) Q,,) :
On e PXFERE, ERTSELE

V(Q,) ={x1---x,:x;=00r 1}
fEE X, y BT V(G), “MBA HACY X8 b -yl =1
HUE AT Q0 A 2" ANTIUE. FATTATLART V(G) 1Rkl 7 -
X={x;-x,:x1+-+x, =0(mod2)}

Y={x;-x,:x1+--+x, = 1(mod2)}

RAALEPA X PRI, AREPAS Y R TUREIE. T2 Q VA X HI Y /R kil 7, 2

—A L 5L AR X TN, A EBIE Y A o ANTIUSRIEALE, A Q && n-1E N
) —HBE.

Theorem 3.2 7% k>0, N —A> k- N —3R B — & & & =3 A.

Proof %57%E G )—A> 3% X F1 Y, 5153 e(G)=kIXI=k|Y], T2 IXI=[YI. O

SierE L, ABARE], —4 n 4BEZ TR 2 A k—IE NS5 .

3.3 walk, trail, path, circuit, cycle

Definition 3.5 :
(1) wv-walk: 245 —ANT0 S A 3248 H B P51

W = (u =)xj0ei0Xi1€i1 - - - Xk (= V)

H 53 e FRSEH IS THURSE U2 I i A i i, S PR FRAE walk B B2, T[]
(2) uv-trail(@): A& EE N uv-walk.
(3) uv-path: A& HEE S uv-trail.
@) circuit: Ft 5 2 S AH R Y trail.
(5) cycle: i 552 5 AHF] ) path.
(6) maximal path: — NP AL SFEAEART A TR b ) i
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TE BT S, walk 22 iy DATR ZE5R I 3 MR A% 0 2 R A A B ] B T e S, (B A A B
B, R SR A E ] DAME— Bk sE — > walk. walk,trail,path 2 SR S AR R R, FRA2 AR,

FATHITE uv-walk F£_I- vs-walk J&—~ us-walk, {H uv-path 3 _[- vs-path 3 A~ —5E &—> us-path,
PR H P AT BB B AL . (B T XA B, AT PABRIE 35 1 9 b 25—~ us-path. I DA
W SR T W TR ) 20 K F o — DA R R, IORFE IR e — T H I

Theorem 3.3 54—/~ uv-walk — & ,4-—/~ uv-path

Proof %} uv-walk=W B4 TAERCEEIAGAYE. 24 1=0 2 AR,

R/ INT VIR L. WP TG A AL W E 482 — > uv-path. H K x 2 Hj
S IR A, TUITE W5 P x Z [0 BT A s A (PA S — AN B ). J A5 31—
JEANT 1S T W By uv-walk=Q, HHZY Q A& —A> uv-path, 3% uv-path 5T W 1, ik
Eg, O

Theorem 3.4 15 G Z M £E, 6 £ GWRZANTAEE, N G FEH5KE N H 6 b3k

Proof % P=(xo,x1---x) & G FIEK M, WH P KM, P —E0& x MITG4E, T2
L(P)=k >|Ny| >0 O

Theorem 3.5 & — /A~ F 4K o9 walk, — & 8,5 —/~FrF%k89 cycle.

Proof 15955} walk (KB 1/EIAN. 24 1=1 I}, 22— loop.

s/ NT 1 EFE5IE 7. 58K, 25 W R JCEE AR B 05, B 22— N80k 1Y eycle. 75 W45
x 2 H AP EE HIR A, WA W A RERAS x, x-walk, Hf—AS2 A5, — AN 2%, hia
b IES O

L

EAS VIR R RO Y walk S04 BLETIE, TR ft ] B U fa] B A S ARE — i st RE A 21 B 40
f walk. b7 Y 5E BERT DA FATT 220 B IAL. ST — R AR 2 B B R A . AR
AR BT 7 2T 2 b P

Theorem 3.6 %= G &9 VTR EEKXTFTHFT 2, N G P —2 &4 —A cycle.

Proof 1% P j& G iK1 path, u & P [J—> endpoint. W u AJERFHECR T8 T 2, wHA L0
X, y. P PR, x, y —E#BAE P o i, AR =R x, y, u BY5EIE T B8 ) P o — R
573 xu=e. T2 P+e 4 G FH—> cycle. O




3.4 M, HEWIY L, B FA, B 49

BEE BER] LA T UERH 2 BB Y — D FE B G Rz A Y A S fihz 2 A —
JUMEE 7Y 32, 1 HIHAFANTI R BEHRR 2 B AL
18 AU T34, W] LARERHAS21 T 1 2.

Theorem 3.7 % G Y Z NV TAEERTFTEFTFERTFFT 2 NG a5 —AKE VR k+]1 8 cycle.
Theorem 3.8 188 F, H— AW K &Y trail FR2 ) 84, BP#R5E circuit.

Proof ¥ T & G i — KL, v & T w5 Tl A, WAGE 8] v HH T 28R PA v i
i, T dv) SR, T T rTPAGREEAE I, I T AL v A2 0, T A REAR A& T, O

3.4 Eil, Eiisy 52, BIes, B4, Ye

Definition 3.6 :

(D) XIS Xy, BAEAE— 2% xy-path, WIFR x F1 y P A2 .

(2) Hil 2 G PIEM KA.

(3)1 1_3‘6%'{1 V(G) SHEBANE N &R, B EN R BSH G BT EIFME G WEN X. 4) #
G HA—ANE# 53, PR G 2k,

(5) A4y S Ty, WIRRAE trivial 1738 43 3¢, MY HACY o A — AT, 24 HALY
B2 G PR LA (isolated vertex).

(6) X T A MK, # x £ y F—> path, y 2| x A —> path, WFK xy 25 Ei.
Theorem 3.9 G A n NTA & k &i, M G £V A n-k A&l %

Proof X} K {1344 24 k=0 I, GG IML. th TA5 MBS MEBS L, TREA
4 H P . D

PRILFRATT A S
Theorem 3.10 n %' G & i&i@ay, W G £V 6,4 n-1 5.

AR A/ INTHL L E ] DA — 1 P 5 1 1

Theorem 3.11 n i £ B G, % G t4 & AR EE 6(G) = (n—1)/2, N G — & & %A A.
Proof LREWIATE u, v. 47 u, v TLIEFEKEBIE, W IN(w) UNW)| = n, TIE. T2 u, v EH—HH
P, A —4% u, v-path. m

TR 2, Il — 2% i o i 22 M N — N30 23 52, TR B 1A BRI LE REH I 348 73 <R
FEHEAT 20 . TRBATA & 3L
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Definition 3.7 :

(D XFT v e V(G), e € E(G), #5 G-v TR SCHIEIN T, 77 v 72 G AL, 5 MIFR e X
% G-e YIRS ST, Fx e 22 G RYHIA, & W FRAEEMmL.

(2) T 1 PR AEHe (block).

Theorem 3.12 F-F JLiE i@ [ £V A /A £ i85

Proof it P=xox; - - - x; 52 G I EA B AEREIRS, 1T AW E Pt sl S TR A5 45 xo 22 5, W G-
xo HHASTER AT 3. 3 A G, Ga, AE x1 € V(Gy), {EHL y € Ng(x0) N\ Va,. BT y Fl x1 TG
xo B @ AN, T2 y AE P H. M e=yxo ANFE P H1, P+e s2 Lt P K[ path, 7). T2 P B9
A iy B0 A2 1 3 o
N AERS T Ak B i A
Theorem 3.13 — 5 i1 & |1 5 AL KX i RAELA cycle .
Proof WU H ZHE e IEH D K. e N2 EHENT H-e ZEEN. T2 MM Tk H-e &
EE 2 HAY e JE T 5 H 1 cycle H1.
e FEHA cycle C /L ALH H TS x. y. BT H 21K, 28— xy-path. 25 P A&

e, ME A H-e [J—%% xy-path. %5 P G55 e, M e Belfeff: Coe, 55— A5 e 1 xy-walk, FHorp—7g
@,/é’;—‘% xy-path Z:/—Q'; e. Ui H-e %ﬁ@ﬂ/‘]

J3—J7 T, # H-e 2 &1, 255 7T AKE]— H i cycle 17 e, JANANIIE. m
3.5 P
Definition 3.8 :

(1) 25 TCHR B i TR AR T AR VRS AR 2 148 XORIY, A5 XA AL AT T Je i 32,
Y AT A TR L IC AR . IRz A2 —A ik, X, Y FrAfE G 9 i Ris).

(2) %5 X AY TS B ], I G AR5 .
(3) —A~RE IR AN TIUGUAT S K 2%l FfE k- aE A el

@) & X PHMEE—DIOEAM Y PREE— N IoREA W, FRVER A .
T2 A E R T EBE SR A&, IR R B e B 3.5,
Theorem 3.14 — /A % — <A % HIL S €% H 5.

Proof PO G 2 —A B, X MY BRI ATE - MAES X BAYTUSH K cycle,
HESER X —d ki TR, T2 cycle 2 M)

¥ G R IA B E, BADRAE G ) 584 A G — =B P LEE 4 3 H, AT H Y
— AT w X TAER H TS v, 1 SCREL (v) S fe/ MY uv-path (1.
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X = {v e V(H)|f(v) 21550

Y = {veV(H)If ()24}

FATUERHIXFEAF R X FY & H 1 3R AFR v, vo € V(X), & F A HE, W uvy, viva, vou
& H i — A28k walk, il e 3.5 H S A 50K i eycle, AP JE.

FREXT G AR L 432 H, FAVSE T H 5 —5B%1 5. 8 EE 4 00 X
ke, Y IEE Rk, IR S AR X, ARSI T G 1) %l 4 o

i PR A 2 R T T A TR, e T A ) SCRATT B R
K53 AL, —AS5e 4zl K, AT DA RS IR IR, T T E A R AN R SRR A
7

Theorem 3.15 K,, T vA 5 f#4F k A~ =30 B 845, B A0S n < 2K

Proof k=1 I}, k,, BEFRAE—AZFRE, 24 HACY HA B2 "R HAY n < 2

PBEUNT K LSS 5 K, TTDASMIREE kA —FEEIE, 1T ke = G U -+~ U Gy, St
A G e AL FATR VK, 4-E XY, Horh G 7 X P, 78 Y R Toi. TR k-1
A G WIF—E s X AR B Y &R sea . TR iEghEk, (X| < 2471 |y] < 281
M n=|X|+1|Y]| <2k,

Jez A n < 2%, MRS 4640 VE XY BBy, Horh i — i & T 241 A gh ik
AR AT BRI k-1 A 3. AT X W5 i DA Y 19268 i Ao, 153 k-1 4
G 1) AT B RHE XA Y Al e 4 R AR kAN, TRA338 T G i kAL b1
H2 G. O

3.6 Wkhik

% B IE T A 1)
Definition 3.9 :

(D) & B — 4N W FRVE R b ik

(2) BB FRAVERhE BT

(3) A WAL E] g I R VR R P

WAEAE, — R 2 HAL S E ] PA— A 515 5 i 52 1 L[ I A5 I AMA A RiChE
2, B BRI . S st R A e — 45 1 5 {E A 2K [ 3] J A%

Theorem 3.16 [4] % B4z 8] & HAL S £ % RA —AHk-F ik il o &, 5 A —ATRE AR 182
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Proof WLEANEZ AN

FEoME: X G AL m SN, 24 m=0 B 2R, BRBUNT m e RGT. W H 2 G HEaRF
JUMEE 7 32, W H AR TS AR T 48T 2, T2 w2 3.6 41 H Al —> cycle C.

R G 2 GME CHhriLBRamTE. G RIS SRR A, hIH A
G' WA 5 SR & — DAL AL RRIX LERHL [T C ERER, e —4> G LRYERBLE. o

3.7 Hamilton [&] *



Chapter 4
B SCPER . PR

4.1 W

4.1.1 PR SORIEAYE R

Definition 4.1 :
(1) —AE cycle [ EIFRAE forest(bk) Bk # acyclicOJCHE).

(2) T I8 P21 P B A1 .
) BTN 1 EIFRALE leaf ().

(4) G 1Y SCEET IR A, FRVE SR

ST BI) spanning subgraph, J& i — AN 2L, ORFF TS R 5181, E AT AR
H— e — AN AR BRI RN 2 SRR

Example 4.1 Paths — & 24, X2 H1 T path J2 Jo 8 A9 @8 . 2 path 24 AL 44 e K TR
At 2. QERGZEAY e R A E. ENER R AT AW S # T sh—E A T

Example 4.2 —/~EL2A, WEHAS U — A ST R
AT G LE R A

Lemma 4.1 —/ 2V L5 AATA S 898, —Z LA A leaves(vt). Mldghtnyg —Aset (AL X IKEY
AR 4 i21), AE BRAFF) — A,

Proof {E—A>Tol8l &, AR — MR P 4 3 s AT BRI 1 o B R 2 AR 4T Jr. S
TICREIE, s B TR R L. PR i i B TR E Sy 2(EBE ), W x-y-u 35X 4% path fill | ux X
FAVRALE T —A cycle. MIMFATIFRIBHA leaf, BI— ZA KA FLEK i 9 Ao o5 s — ANt i

53
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IRANRE (AT~ TC ) Vel A5 T -t A A 35 A A 5 g RS, A N5 i vy P 473 1, o
4. o

XSG B FEA, ATAT— 0, TR A 2 — AR AN R, T2 AEE i A
YR T RIEIE I, FATHT LA IR L T 9h9A.

Theorem 4.1 3 F—/~ n B, T @ WA EFH:
(1) G 7z %A L aY.
(2) G &ifibey LA n-1 FiA.
(3) G n-1 1 AR,
(4) G A5 & H BLAUH — & kAR ik

BEUEPI 225 KB URAN S 68 Til.

Corollary 4.1 :
(1) ey d— F i AT
(2) 5AHE o — e i1, P3G ot g — A cycle.
(3) H—/A 5 A 64—/ A R
Proof W1 G G, B HITH & 3.13 AR 4G — F% 8@ Ed. ik BUAITE R A TS

AR, TR I — 2 L REREIN A~ cycle. K I P ) A O TELATMH 25— 2% 20, A2 i
TR TR 1, RIAE JSA. o

Fih.

Theorem 4.2 3% T, T’ 5z £ i@ 1 G ey A~ £ i, 3 FHEF e € E(T)-E(T'), A48 ¢’ € E(T')-E(T),
1543 T-et+e’ & G b9 —/ 2 A

Proof | _FHERHNE e & T B9—AEEANLE U, U 2 T-e (ANEE . T T 2iEn, T2
A4l e, —ufE U o, —iife U . B T-ete’ j&2—A n-1 SRl A, 22— . o

4.1.2 ¥EE. BbE, hub

Definition 4.2 78] G H145—4% uv-path, FXA1KF path {5/ M FEE 2 U0 uv S B B, Q2R i A3
JC path, E SCEMTRIIE B2 ICE. I G W EAE (diameter) /2 G WG REE B, — A0S v AU SO
& (eccentricity) 2% /5 2 B S KBRS, iC4E e(v). B/ ELDFEFRAE G 1Y) radiusCEAR).

AT AR, 3T —AEmE e, HEARR TS RINFATA I, F— A AR, A
(] 4 2 LS AN B, (R e [8] U — 4% path, T2 AT THAEM_E2% B .
THEHXAE, HATUE ERBTTER BRI ELR, AR RE 2, iR 4, KRR T.
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T EHSA T G W ERR G BAMNE EARZ B K.
Theorem 4.3 7% G & £ H, W G AZRTFT 3 TAEE G B AZNTFT 3.
Proof M1 G WHEAEKT 2, TRIE G TAAFEM A X, y, BN HLWEA I F L. SERIXTT X,
y ZAMATIE z, BB L2 HEE S x, y Hr— 48, T4 G A&, z 2= /DR x, y Hir— N H4R.
MAE: AEHC u, v, 7E G WM&, u Fl x, y E—FHER, x Al y #HER, v Fil x, y Higr—ANFH4R, A
H—A~ uv-path KJF/NTEET 3. o

SageApe=>

u el v

Definition 4.3 [§] G [1Jr]0» (center) 42 H 25,00 355 T BRI TS 175 S0 1A
Theorem 4.4 (Jordan) #&4 & & & — A & & — 5.

Proof FATARS T TR S BAEECEA AN, 24 n/NT4ET 2 INE5E RIRGE.

BURECS/INT n i, S5RO7. R T 4B ER, 20 T JATHE H, AEE—A T TN
w78 T H-5 u B s T —a e T — 4 T T A AL A AR TR 2 A S
BEAHIER, H BT M A T, T2 e (u) = er(u) — L XFR—A T TR w BN, HIt,
T PARMA TR T A OB TR, 4 HACH B T BRI TR, 5 —J7 L, H—E A D T
a PUNERBS DR —E R T BRI LA,

LiETH T gy O MR TR, g B RIA. o

4.2 T R DR RI A bR 2 i )

4.2.1 PATECE, Cayley 245X

AT FAEMRRL—LE counting [FJE, BIAN: X TAER—A &, FATRT AR Z DA A R 2544
1 Cayley & BEEIFFA], — > n Brog &, HoA n =2 AN, FoA PRTEA T IR & L
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Example 4.3 X} F—/ = A0S 9 TS 4, HAE i =4, & =4 path, Sl e @ WA ITE NiZ
path [ HLL R X 5.

Example 4.4 X1 —ANPUAN TS B9 T0 S 4R, AR B 16 A4S, 435112 4 BN 12 4% path.
Theorem 4.5 (Cayley’s Formula) »f F—/A~ f K& Eag n T & S, vA S AT Ea9HEH n" 2 A~

Proof MAEMIE] 7 XU MFE. FATTEAE n AT A T B AR — AN EECH n > a4k
B —AXU. FefTi S = {1, ....n}, HIE S BRI ¢ FIPEAS S IR x, y (O BIFRAEZE A 3 0. 2
Tn = {(tsx, )}, AL Tl = 02T, FATEEEW] |T ], = n".

FEE| N F| N WG NV DR 0t BrPARRATEARE] 7, B ERXUR. & f i N > N 2K
— ARG, IR 2AFATHT AT 10 R f . He st

A G
7 4 9
1 ?D—‘—. 10 <
Y
. 5 p——o 3 DB
Gy A
— =9
2
MEL Gy 1) — AT, H A AR TR R — B8 AR TR TS B & Hh — 4%,
T P P ) TS EOR B [, BChE 376 & — 3 1] 18 (directed loop). 4 M C N A7 ixX 2L
FI TS AR A MO ME— I K146, (145 F 75 M _ERFR I (restriction) J& M _ERAUS. i
a ez
| =
Il (f(a) - f@

X HL AT B A AR I e, RN g T2 AT JAlT% x = f(a),y = f(2),
T T ZE A IS AR X I AR BRIT f BA £ 2 4558 A 0 L1 i N At 280 i s )
BRAS, R T A DGR IR G BYT7 TSN, F 45 B 7 A58 — VA 1 . Hedn B gl iy f,
HATA M ={1,4,5,7.8, 9}, FFEIHEE AT f(M) ={7.9,1,5,8,4}, T2FKATH i £ 4RI IE  40°R



4.2 HE BRI AR ISR ) RS i i 57

XX AR 5 A3, R RE A 2o A U, 14 IR0y HOgA T
MITEATENLT T 5 NN FRUR. o
4.2.2 DG —RRICERPE 0 A b A B

AE /N R ERATIREN T n B o 4 B 0 A s O BCRE, TR IR AT TR TS — IR A 2 2R .

Definition 4.4 7£— /& G W, RI&H — 4l e = uv , IATIRIE G - e 7230 e AOUHE. HAF v, v 5 H
TN AR, HARTI S 5% S A A0 Y HACY S v 5 v AH4R.

e D@
G G:-e

HEE, e f5 T RE S L B, FNTV %R B X ST, I H AT e gb AT X A T UHa
ARG, FRATTAT LA — M JCHA I A AR B A T 3

Theorem 4.6 £ 414 7 (G) & G 894 mifag =, & G o933, WA 7(G) = (G -e) +
7(G-e)

Proof FJc G il e BIIRLEA: A O BCEAG 2 7 (G) = 7 (G — o). TRILMNAFEMH G P i
e A A YRR SFT (G - e) BlIW].

FRRATE 5 e BRI, 15 e I R132] > G - e WA A, I EANFEIRY & e Az il
JERFRI R AR G - e BASRY, T2 LT — A FUp MR—4 G - e AR, 24 Jell
45 e PRI, XA AR 1] AE A2 S PRI s e, TR ABE A4 G B e AL A
TEWCH e IRy X2 — AU T2 G 19 e 2L G - e B4 lipt—FEZ . o
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BRI

G G—e G-e

MEATAEEE ST T RATAE N G A S 8, ife G s — A 2 3F. (3
72 T 25 P PP AR R AN SO PR B AR I R, T AT R] ASEIE T S 25 e T iR T 5
SR BT TN G R SRR R T A, Rk R IR, FERE R T AN

i

Theorem 4.7 4% G & —/ LI A, Q & i Laplace 4615, = EMIAR L E s 474254 1 7] &, 15| 0494E
% 0%, 7(G) = (-1)"" |0

A M E BRI, BITEIE Cayley 22 20H ik~ B fay BAAEIE 1



Chapter 5
PLACELIE

AREER A AR —/ NI R IRATE 1 PCHCAY AN 2 S, PAS— DUl @ a R DERL A FE 246 7
BN EATG . B DU AR AN R A SRR AR =N R, 3K
g /NS B FRE Y size FIECRICHC . FRORPMSZERRY size YRR KA.

5.1 Matching and Cover

5.1.1 PURCAREA A, e RPLAC. Bk PEfic

Definition 5.1 (1) G FPLALE — N ICIARINLE, A ERE AN IO A LTS, () — DTS FRIEE M
— AN, A SRARAT MR R B & WFRVEA AN (unsaturated). (3) perfect matching 2 {ii15-
G ™ r A i AR A matching.

Example 5.1 K, , A n! /> perfec matching. 7] PAiX K., B9 5R%I 5
X ={x;, -, x.}

Y = {yl,... ’xn}
W4g—~ perfect matching #XFR. 7" —4> X £ Y BUUS, Hnf PAFRAE (1,2, -+, n) HYEH, TR2X
PRI EARA nl A

— MR RIS, AT B perfect matching.
X Kon, H fu R ERY perfect matching [ 4CE. WFRATA - e — TS, WRAA 2n-1)
Fideis. T2
fi=C@n=1)f1=-=2n-1)2n-=-3)---(1)
PSR DL [a) A B AT DA T LA

59
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Definition 5.2 :
(1) BRVERE: - PEAL i PR BT A k.
(2) I KRPLRL: size S KRRYPLHL, X B size $51Y9 H K2 M R 80

—AROR PEBE R Wos B KV B0 R Py, FATTIEICH A 322, Xl —RK P, {Hf K

PERCRT DARH Py ZE A BT 4530

Py
W2 Py AR ICHEL, (HASZ 5K ILRL.
HBIE2FN B — A VCEL 25 2 i R VT ECNR? FRATI 7 B S8 2R 78 ok Z) i) e K VT .

Definition 5.3 %5 5 —~VLl M
(1) M-alternating path (&% #%) F5 12—, M AU FIATE M F )i 22 % i PLAE path H1.
(2) M-augmenting path (W[ §™§%) F51F) /2 — 43R %, Hovi 2 M-S AT S,

BIAFE] A M-nl 7 P, FATRTOARE Py Mgl e i PR A AAE MY
0, BB —ASHIIC I M7, BEPCIRCHY size FEIFCRAGITECR 1 1 FRIANISLZ2G 2] — A ITE R K
PEPCAYIL SRR HAN S M]3 i

Definition 5.4 G Al H 2 DU 4[R2 V I F% GAH 2 MATTRRFRZE. 32— APA V BT, DA
ARLEIAE G 58U H i B iy .

Lemma 5.1 A/~ ITE A9 3T AR £ 89 4 —/> i 38 4 3 AR 2 75 B

Proof DA FiCAEMATRIXIFRZE. F o i08— DU ER N ILie b 22 H — Rl S ok, T2 75

F i 2 2P0 5 bR Aixt T F A4 — ANl ) 52, HARR oK TUR B/ INT 25T 2 i Em A,
AN S RE 2 % R i B, b T R R A2 S B, TR e R k. o

AT X ME R TANTAT AGS th— VLR B K PL LAY TR 2% 1
Theorem 5.1 (Jp KVCHLN FE B4 k) M 2 K BB, % BAL S & M-7T ¥ 9%

Proof FAUEWIFE M. R N Jg L M size BORAYVLAL, FATHE—5 M-AT P 3%, & F g N Fl M i1
XFRZE, A5 | BEUHIE F AR 7 SOe ek T [N - M| > |M - N[, 38 F o N1 M
Nz, TrEDFE—DF TR TS ELH N i3, IS HEEZ N RS> SR —%
M-Z2 B % (A cycle Sl —#E2) . i TFHEHEZ N i, TR &AHGR ST N i, 25T N
21, AT 2 — 4% M-R %, F ). o



5.1 Matching and Cover 61

5.1.2 Halls matching condition

275 18 TAE- DS 2y Fe MBS, K2 Ol Dl B I B KT AR R A8, TR IANIATR
L J&—> perfect matching, H #5255 [~ matching, {5 LAERIMAMRIAT. T2 1%
JE—ANA T XY R ERIAL FATT SR PU M, 7S X2 A

FATHIE XA matching M AFFER A ZZEAT R, T X MR IE= 746 S, S ALRm %L
—EERTET S, EXAFAFFRAE Halls Condition. Hall IE] 13X A& [l ifid k& 5E 70 1.

Theorem 5.2 (_¥BPAAFERE R AN Rl 2 MU PL ARSI FE 255 1F) 28 F — A =261 % X, Y 49 =3¢
H G, A EMAF X afot XS0 AR M2 T XETTES INGS) [ 21S].

Proof WhE M AR, NI ATUEM TS0 1. BA 1% B anlny @i ol 5 M 2 G YR IERL,
HM Al X OREAL WA X 5146 S, A5 [N (S) | < [S]. CREFFARREA KA TS TR, N
HIRERE S LA DU —A Y F i G &R ). AR X T4 S.

B X A M-S u, iy S @B u il DA M-SOR % SR X A AR, T2 u /]
PR IE M-SEBF B BIIARY Y AL (S F—EA 7T u B ? 35— h, OB u 1E
Y AR ARy 1, BN S= {u} BaE MR TS, il uy AEM H, HEZ y —ERE
A XA x IR, A RE uy SXASHMA M AFREEE MK T AT u — & R 508 % 5] X
R TR x )

FATHrSE M ICEE T T A1 S — {ut. WM u A — 4% M-SR %, B STt — 4 TE M iy
BENE T, FEd— 5% M PR AR R S - {u} TR S - {u} HHICEK, #Ed % M Pl
5 T PRI REC. AR, T WA ALE 1 € T /M P50, FF ¢ 5 8 — {u} FIEAICR
RIFEA. X ST AT £ S — {u} AR, W] PAUERHX AN XUSS, i T] = |S — {u} |

NHEFEATE, TS - {u} PRERTUR, HICER T PR Z SM&RE. AR, s S — {u}
FIE x B BR T R CAMAR R y, BT xy AfgE M i, W {u, ,x, y} 52— M-n] 3.
5 M 2 RIERCT JE. M

IN(S)|=INS—{u})| =TI =S —{u}| < S|
]

BEAE B RFRAT], ANSRARAS 35 2 A5 A VT HE w] RASEAS — 353 43 iy e — AN R0, FRATT T DA
R B0 & 4R A1 B2 B 20 Fm Bk I .
Remark 5.1 It e BAHIER A FE U 1F G A EIAFAE.
Corollary 5.1 2} F k>0 89—/ k—iE N =3} 8, #-H —A~ perfect matching.
Proof X1 1E W E — 3K, FATVHLEE 2% R (fmaEBE3.2) mxifbE, O AFHEFE—
VERCBENS fifS X A T T AR — X T4 S, ZE S 2| N (S) il m. T G 2 k-IE

IE, T m = k|S|. 1A m 2305 N (S) KB, I m < k[N (S) |, BFIN (S) | > |S]. i b B,
G % /& Halls 514 O
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5.1.3 Vertex Cover, Edge Cover. independent set [%]J: 5

i M EBCH perfect matching, FATTRI AE 1 M-n] 47" ok JBr— > PUiic M@ A2 e K PTIE.
(HF SR T M-SR B L R, AR5 IR AN S T B 5 BEAEAR I A a]. AT 75 2 2 Bl 7

Definition 5.5 G i) B #EG 2 G DU 146, A S TRAAM 2D,

Theorem 5.3 (Konig-Egervary Theorem) % G % —/A~ =R, N G 895 K LAY size, T G o9&

INTRLE B E B size.

Proof 1% G2— A X, Y B &I i, Q B—4~ G /NI . M 2 G i— Rk
VERC. IR 0] > (M. T RIATHIE —A> size 2y |Q|, (EFFEX A SIS kY.
HAFZIEQMAH, mR=0NX,T=0NY. ICHMHE BHRUY -T) MTUX-R) %
ST 4 i Halls 28] AUER], H Ay PUiE M4 R A, H Ay PUiie M 45 T 1A A
BOZPCECRIF, i —4> G _ERIPLIE, X ANTTECHY size e [R| +IT] = Q.
THEATUN H 2 Halls 0. T RUT = Q @A TnEs TRMNY -TH X-RT
1. AR N (S) ] < ||, WIFATAT A HE edst S, 1538 — AN E/ M TG B 2 Q. o

X
Y — ——————
T ' Ny (S)
Definition 5.6 :
(1) — AT AR HEFRAE 2T (independent ) , 7573% 45 FP AT R TH SO FHAR.

(2) G i independent number J2 5§ H &5 Kl 7 T8/ size.

— AN EREEREZNE K size B T4, B Cs H BRI ML 4R, AE size N
independent number F{) 37 14,

FATRGE, AL T EA P RE# 2 matching AP 451, [RIAE, B WRA~4 Al DA & 4l 57
PN R X T X Y 2 i P
Definition 5.7 — & G 52 G AR T4 L, (4% G PRULE TG 5% T8+

FEAI IR AT AT G AT L v i3 7 2.
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45 VAT JEAIST SR A AT 0B 3. A perfect matching /2 k. — kB, T TT
PAEIEAS matching SEIILAR IR M. 4 1O IRSEAUR, R HiAsE—Hi0%.

Definition 5.8 :
(1) G W KIS 411 size= a (G)
(2) G f RILHLH) size= o’ (G)
(3) /NI B ) size= B (G)
(4) B/ NAE R size= B (G)

HIFITEI Y Konig-Egervary 5 B, X FAERE —ABIEL, JATEA o (G) = B(G) BT RIEATRFULN],
X B IGL R B, TATA a (G) = B(G). TRMT i i, & EA o (G) < B(G).
N IBAT TG 2 A TAE.

Definition 5.9 %3 E TS R T4 S, FA1H S KER V(G) - S.
Lemma52 £ G, AL EGTES S AR EL AL S E—ANTREEL, Fik
a(G)+B(G)=n(G)

Proof #; S j2—APNSE AR, WHERE — %10, M i AN AT BRARAE S o, TRATE — Rz 5 S
A ST, AT S A2 R . S22 B mT PAZEABIRE H. o

Lemma 5.3 % G & —/~fLIn= 5 a4 &, N
@' (G)+p (G) =n(G)

Proof UEMHRELHE 47— ROKIEHEL, FATH H A size Hy n (G) — o’ (G) W 5. MIMTFKA]
35 B (G) < n(G) —a' (G). K2, HE— A/ NU A G, FATH I —A> size Hyn (G) - (G) WyIL
. M FA152] @ (G) 2 n(G) = B/ (G). WSS L. " i FA AT Tt

HE—A GIYECR LR M, M B 40— il gk, w1V (G) 1Y 2IM| 4>, (Hild A n (G) -
2IM| A R BCA WO I, XL SRR M-AMERILG. i M s R A R IEIRGE sitt, T2 48— A
HRAR- S HALGA — 218, NIFRATRT AFELEE MO n (G) — 2IM| 45300, 733 —A> size
n(G) — |M| (a5, I Hith & T Hrd G I, 2 il s

[z, g — /N L i L s MEFNTRNE, #7210 e M i n#B T L A
ftnils, W e AJg T L. NI L 98— EE D G 22 R AR ERT L R AE
ARMHIR. BB LA k ANEE Y 3 T EE 3L CHA ICl -1 &8, TR ILI=n(G) -k
TERRAN TR S0, AR 4530, 155 size O k AY34E M, Mg — Ao K ILTEE. o

Corollary 5.2 % G % —3f 18, 5 LA HINLE, N a (G) =B (G)
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5.2 Factor

FATEL R KRB FE— > — M &I 1Y) perfect matching, St IRATHFFTIE R TE 2 A 51141, & G 1Y—
A factor J2 G 1Y— A2 Tl k-factor J&—A2 i k-1E ) 1~ 1.

it E A PAF Y 1-factor Hil perfect matching ASJii bt [/ —Fh 7R 74, Bl 40— G A 1-
factor, FUEMRE HA A I-IEWA ST, ABAXAE IR perfect matching /& bt 1-1E WIAE B+
ESTEOpuE S

5.2.1 Tutte’s 1-factor theorem

Tutte &I T —MEH 1-factors MBS %5 G A—> 1-factor, T A 1% BTN T4 S C
V(G). W G — S By ADa B im0 43 3, #A — DTS RIZ I 43 SOOI SR AR, XA~ U RS
TS, TR LEXT A S i A AR ], T, A B 4 SRR 0 (G), A
o(G-25)<|S].

[l Tutte 3848 XA 452 78011, B

Theorem 5.4 (Tutte’s condition) —/4~ 8 G F I-factor < o(G-S) < |S| *F F1H£&F S C V(G) # &

aL.

Proof WENMEREINE, FRATEUERA 78751

EHLS Cc V(G), WIAE RS G — S SSRGS 0o(G - S), HafRREAREEE 1.
e G e tutte 5548, R4 G = G + e i 2 tutte 254 EHE—H, ¥ G” ¢ 1-factor, N G 75
1-factor.

B, e B A EABGL, WA E—ANE G2 tutte 2544, (EANFEALE 1-factor. FKATTAT AR
W G AL —4%1A 1-factor. FAHRAEN] G ZF52 F2F 1-factor 1.

BU={veV(G)|dv)=n-1}.

Casel: G-U 15 —ANIEMSy XA E 2P, TERXFIEOLT, B RE %30 45 ST AT A
H— perfect matching. & — 271 4> 3¢, AER— A S0 U Fig S IEEE, I BT o(G -
S) < |U|, W] PAGRAESE—S IO 9 73 10 43 SO B U P FCAS AL U ) i B TR I 40 S HoAR
PIRECZ A PP VL X FEFR AR 2 T UCiD , KA G -S iy fUR BRI, Ut o(G-9)
2 KA A,

FATAT AW Mt U vhid ) T RECE A (BEE AT A B ATRAIE). T2 B U rp i) s i B
VERCEE R, RARNEE—A G LY perfe matching, B35 i 1-factor.

Case2: G-U f#{E—ANEEil 5y 3 AE e 2 B ETA] DAIER] G-U W fEwi A~ s B 25 BT
AHHEBHI M L xz, BEATA SRR y ¢ Us Hik—28, e w € G-U, w Al y NAHER. (B #AT:



5.2 Factor 65

H G WHGE, AEEM—40#A 1-factor. T2 My, My 73532 G +xz, G + yw [ 1-factors. A
e MIAM, 18—/ N4 xz fil yw B 1-factor, T2tk 1-factor 52 G A 1-factor.

fir F = MiAM,, W xz,yw € F. i TH—PTUSFE My, My TRYEERGE 1, T27E F R o
5 2. [ F Y 40 SO IRA7 B cycle(d & #ES.1). Ay C 2 &l xz 14 cycle. # C A&
yw, WK 1-factor g2 C Hiy My 1931, FIRFE C W) My 1934, #5 C A5 yw, AT DANERA
HA1% 1-factor. m]



Chapter 6
A i)l

6.1 Vertex Coloring

Definition 6.1 — 4~ G 11 k-coloring /&—~> labeling f : V(G) — S, H |S| = k, #HEHITS
S = [n]. BT 51 label J&—4 color. #f[F] color [#) 10 j5 k4 i —4 color class. 45 Bl Hx—
A k-coloring /2 proper [1], 5T HSHHEEA TS A ARE color. T2 AT AFK—E G 2
k-colorable, I AA —> k-proper coloring. I 11 x6 2/ K, {#15 G /& k-colorable.

Remark 6.1 7 4%F—> proper coloring B, %F—4 color class &4 independent set. T-5& G J& k-
colorable 24 HAY X4'E &2 k-partite.

Remark 6.2 £ loops [ &—3E %A proper coloring, #FATIHEMHERE LI E.

Example 6.1 (1T G /& 2-colorable 24 HAV 42 —#F&l, T-4& Petersen B Cs #ii& x(G) > 3 WA,
A PAIERHEAITA 3-proper coloring, T2 BEAITHY x(G) = 3.

Definition 6.2 7[5 G 2 k-chromatic(f) 1, %5 x(G) = k. —4> k-4 [&] ] k-proper coloring Fr{E 2
optimal coloring(: fE1¥)). WX T G ERETE v (H) < x(G) =k, WH G & k-critical /1.

Definition 6.3 G [7J clique number #5192 H 5 K clique BIF 4L, iC/E w(G)

Recall: FATH a(G) F/nH K independent set [ K/ TEA I FEERT o, 0 - H1EH 1L
AR G 1.

FATAT LAEWRE HIFHAIE ¢ (G) 1R AL
n(G)
a(G)
Remark 6.3 FJi )56 — A, FATEIE ¢ (G) > 0(G) 2wl figH
Definition 6.4 G #1 H ) cartesian product:

ieHE GoH. 2P V(G) x V(H) HTHSEE, WA (u,v), (u',v') AR HACE EATZ h i —4 4
FkATE] 55— AR BRAE I 1 HAH 6.

Proposition 6.1 xf FEZEH G, x(G) > w(G) VA% x(G) >

66
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H ot E XFRATATPAF H cartesian product iz 2 X FREY, Bl GOH = HOG. &4 H— carte-
sian product {51+

H —
a B - d
x [t (x,d)
G by ¢+ GOH
z & (z.d)

Theorem 6.1 y(GOH) = max {x(G), x(H)}

Proof T {g}oH BH—ATH, TY% A x(GoH) > x(H) KA x(GoH) > x(G) T
x(GoH) = max {x(G), x(H)}.

BT E R —NARER, AT k = max (¢(G), x(H)}. ATHE FAHARH ¥ (GOH) [—4 k-
proper coloring. fiy g J7&—1~ G Y x(G)-proper coloring, h 52— H # x (H)-proper coloring. {43~
GOH BT S (u,v) label /E2 g(u) + h(v) £ k. WHJE GoH f{)—> k-coloring. F A 15 & J& proper
). X2 R (', v') (u,v),

0 < [(g(u’) +h(v)) = (g(u) + h(v))| < k

TRENTR A RERE k [ 4. FIIXE GOH fli—A kproper coloring. 37 y(GoH) < k. %L

x(GOH) = max{x(G), x(H)}. m|
1 2 H
E 1

2 P
St 1

G 3 2 GoH
1 2 1

1 o4 3
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