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Part I

有限群论





Chapter 1
群论的基本概念

1.1 群和子群

1.1.1 群的基本定义和等价定义

Definition 1.1一个非空集合 G,其上定义了一个二元运算,称作乘法,其满足
(1)结合律
(2)存在单位元
(3)每一个元都存在逆元
则称 G是一个群.

Theorem 1.1 (群的等价定义)一个非空集合 G,其上定义了一个二元运算,称作乘法,其满足
(1)结合律
(2)存在左单位元
(3)每一个元都存在左逆元
则称 G是一个群.

Proof 我们只需从左单位元和左逆元的存在性推出一般单位元和一般逆元的存在性. 任取 𝑎 ∈ 𝐺

设 𝑎−1
𝐿 是它的左逆元,则有

𝑎𝑎−1
𝐿 =𝑒𝑎𝑎−1

𝐿

=
(
𝑎−1
𝐿

)−1
𝑎−1
𝐿 𝑎𝑎

−1
𝐿

=𝑒𝐿

于是每一个左逆元同时还是右逆元.又由于

𝑎𝑒 = 𝑎𝑎−1
𝐿 𝑎 = 𝑎

于是每一个左单位元都是右单位元,因此是群. □

3



4 1 群论的基本概念

需要指出的是,若将条件全部换作“右”,任然成立,方法是一样的.但若条件是：左单位元存
在,并且每个元都有右逆元,此时不能保证 G是一个群.下面我们给出一个例子说明.

Example 1.1 (半群有左单位元和右逆元但不是群) 考虑 R∗ 是除掉 0 外的实数集. 定义其上的二元
运算 ∗为 𝑎 ∗ 𝑏 = |𝑎 |𝑏,∀𝑎, 𝑏 ∈ R∗.则是一个半群,且有左单位元 −1, 1 ,每个元也都有右逆元.但显然
不是一个群,因其单位元不唯一.

Theorem 1.2 (群的等价定义)一个非空集合 G,其上定义了一个二元运算,称作乘法,其满足
(1)结合律
(2) ∀𝑎, 𝑏 ∈ 𝐺 存在 𝑥, 𝑦 ∈ 𝐺,使得 𝑎𝑥 = 𝑏, 𝑦𝑎 = 𝑏

则称 G是一个群.

上面两个等价定义对于任意群都成立,下面的等价定义只对有限的集合 G成立.

Theorem 1.3 (有限群的等价定义)一个非空有限集合 G,其上定义了一个二元运算,称作乘法,其满
足

(1)结合律
(2)满足左右消去律
则称 G是一个群.

Proof 证明主要用到 G的有限性.
设 𝐺 = {𝑎1, · · · , 𝑎𝑛} ,则 𝑎1𝑎𝑖 是 n个不同的元素 (由消去律保证),因此一定存在某个元素 𝑎𝑖0 ,

满足 𝑎1𝑎𝑖0 = 𝑎1.记此元素为 𝑎𝑖0 = 𝑒. ∀𝑎 𝑗 ∈ 𝐺, 𝑎1𝑎 𝑗 = 𝑎1𝑒𝑎 𝑗 ,由消去律得到 𝑒𝑎 𝑗 = 𝑎 𝑗 .说明 𝑒是 G的
左单位元.又由于 ∀𝑎 𝑗 ∈ 𝐺, ∃𝑎𝑖 使得 𝑎𝑖𝑎 𝑗 = 𝑒,于是每个元素存在左逆元.综上 G是一个群. □

1.1.2 子群和子群的陪集

Definition 1.2 G是一个群,给定 𝐻 ⊆ 𝐺,若 H是群,则称 H是 G的子群,记作 𝐻 ≤ 𝐺.

Theorem 1.4 (子群的等价定义)给定群 G和 G的子集 H,下面三个命题等价.
(1) 𝐻 ≤ 𝐺
(2) ∀𝑎, 𝑏 ∈ 𝐻, 𝑎𝑏−1 ∈ 𝐺
(3) ∀𝑎, 𝑏 ∈ 𝐻, 𝑎−1 ∈ 𝐺, 𝑎𝑏 ∈ 𝐺

特别的对于有限子集,其是子群还有一等价定义.

Theorem 1.5 H是群 G的有限子集,其是子群当且仅当 𝐻2 ⊆ 𝐻

Proof 这是由于 H是满足消去律和结合律的有限集,所以 H是群. □

下面指出子群的运算何时是一个子群.
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Theorem 1.6 :
(1) 𝐻𝑖 ≤ 𝐺, 𝑖 = 1, 2, · · · , 𝑛是群 G的一列子群,则

⋂
𝑖 𝐻𝑖 ≤ 𝐺

(2) 𝐻, 𝐾 ≤ 𝐺, 𝐻⋃
𝐾 ≤ 𝐺 ⇐⇒ 𝐻 ≤ 𝐾 或 𝑘 ≤ 𝐻

(3)子群的乘积是子群当且仅当它们可以交换,即 𝐻, 𝐾 ≤ 𝐺, 𝐻𝐾 ≤ 𝐺 ⇐⇒ 𝐻𝐾 = 𝐾𝐻

Theorem 1.7任一群 G不可能表示作两个真子群的并

Proof 若 G有两个真子群 𝐻 和 𝐾 , 𝐺 = 𝐻
⋃
𝐾 .由于二者是真子集，于是 ∃𝑎 ∈ 𝐺 − 𝐾, 𝑏 ∈ 𝐾 − 𝐻，

此时 𝑎𝑏 ∈ 𝐺 = 𝐻
⋂
𝐾 .但不管假设 𝑎𝑏属于 H还是 K都会导出矛盾. □

有时候任给一个 G的子集M,其不一定是子群,但可以嵌入进子群里.

Definition 1.3 M是 H的子集, ⟨𝑀⟩ =
{
𝑎1 · · · 𝑎𝑛 |𝑎𝑖 ∈ 𝑀

⋃
𝑀−1, 𝑛 = 1, 2, · · ·

}
称作 M的生成子群,其

是所有包含M的子群的交.

下面来介绍子群的陪集
给定群 G, 𝐻 ≤ 𝐺, 𝑎 ∈ 𝐺,称 𝑎𝐻 是子群 H的一个陪集.容易验证两个陪集要么不交,要么相等,

相等当且仅当 𝑎𝑏−1 ∈ 𝐻,并且陪集的元素个数都等于 H的元素个数.于是 G可以作陪集分解,即存
在 𝑎1, · · · , 𝑎𝑛,使得

𝐺 = 𝑎1𝐻
⋃

· · ·
⋃

𝑎𝑛𝐻

元素 {𝑎1, · · · , 𝑎𝑛}称作 H在 G中的一个左陪集代表系.类似的我们可以定义右陪集，并且对 G作
右陪集分解，得到右陪集代表系.那么这样的左右陪集有什么关系呢？

Theorem 1.8 (左右陪集对应定理) 左陪集的集合和右陪集的集合之间存在一个双射，从而左右陪
集的个数或都为无限或一样多.

Proof 取映射
𝜑 : 𝑎𝐻 → 𝐻𝑎−1

即可验证这是一个双射. □

由于 H的左陪集和右陪集一样多，从而我们可以称 H的左 (右)陪集的个数，称作是 H在 G中的
指数,记作 |𝐺 : 𝐻 |.由群 G的陪集分解立得：

Theorem 1.9 (Lagrange) G是有限群, 𝐻 ≤ 𝐺,则 |𝐺 | = |𝐻 | |𝐺 : 𝐻 |.

由此定理立得一个有限群的子集是子群的必要条件是其阶数是群阶数的因子, 以及任一元素
的阶数是群阶数的因子,从而 𝑎 |𝐺 | = 𝑒.于是素数阶群一定是循环群.
应用 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒定理,我们还可以证明数论中的一个定理.

Theorem 1.10 (Euler Theorem)设 m是大于 1的整数,若 (𝑎, 𝑚) = 1则

𝑎𝜑 (𝑚) ≡ 1(𝑚𝑜𝑑 𝑚)
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Proof 由于 (𝑎, 𝑚) = 1,于是 𝑎 ∈ Z∗,由于 |Z∗ | = 𝜑(𝑚),由 𝐿𝑎𝑟𝑎𝑛𝑔𝑒定理的推论即得 𝑎𝜑 (𝑚) = 1,从而
𝑎𝜑 (𝑚) = 1

𝑎𝜑 (𝑚) ≡ 1(𝑚𝑜𝑑 𝑚)

此外，我们还可以用此定理来研究非阿贝尔群的最小阶数.为此需要准备一些引理.

Lemma 1.1若群中每一个非单位元的元素阶数都为 2，则 G是阿贝尔群.

Proof ∀𝑎, 𝑏 ∈ 𝐺，𝑎𝑏𝑎𝑏 = 𝑒,于是 𝑏𝑎 = 𝑎−1𝑏−1 = 𝑎𝑏. □

现在可以证明：

Theorem 1.11非阿贝尔群的最小阶数是 6

Proof 由上一引理和 𝐿𝑎𝑟𝑎𝑛𝑔𝑒定理我们知道，1，2，3，4，5阶群是阿贝尔群.最后以 𝑆3表示集合
{1, 2, 3}的对称群，它是 6阶非对称群. □

Theorem 1.12设 H和 K是群 G的两个有限子群,则

|𝐻𝐾 | =
|𝐻 | |𝐾 |
|𝐻⋂

𝐾 |

Proof 由于 𝐻
⋂
𝐾 ≤ 𝐾 , 因此 |𝐾 : 𝐻

⋂
𝐾 | =

|𝐾 |
|𝐻⋂

𝐾 |. 另一方面, 由于 HK 可以作陪集分解作 𝐻𝑘 𝑖

的并,并且陪集相等当且仅当 𝑘1𝑘
−1
2 ∈ 𝐻⋂

𝐾 ,于是 𝐻𝑘1 = 𝐻𝑘2 ⇐⇒ (𝐻⋂
𝐾)𝑘1 = (𝐻⋂

𝐾)𝑘2.说
明 HK的陪集分解中的 𝐻𝑘 𝑖 的个数就是 𝐻

⋂
𝐾 在 𝐾 在陪集的个数,即 |𝐾 : 𝐻

⋂
𝐾 |.综上 |𝐻𝐾 | =

|𝐻 | |𝐾 : 𝐻
⋂
𝐾 | =

|𝐻 | |𝐾 |
|𝐻⋂

𝐾 | □

利用陪集分解，我们还可以给出群G等于两个子群乘积的一个充分条件是两个子群在G的指
数互素.为此我们需要先准备一个引理.

Lemma 1.2设 G是有限群，𝐴 ≤ 𝐵 ≤ 𝐺，则

[𝐺 : 𝐴] = [𝐺 : 𝐵] [𝐵 : 𝐴]

Proof 将 G作 B的陪集分解

𝐺 =
𝑛⋃
𝑗=1

𝐵𝑔 𝑗 , 𝑛 = [𝐺 : 𝐵]

再对 B作 A的陪集分解

𝐵 =
𝑚⋃
𝑖=1

𝐴𝑏𝑖, 𝑚 = [𝐵 : 𝐴]

则

𝐺 =
𝑛⋃
𝑗=1

𝑚⋃
𝑖=1

𝐴𝑏𝑖𝑔 𝑗
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若 𝐴𝑏𝑖𝑔 𝑗 = 𝐴𝑏𝑖′𝑔 𝑗 ′ , 则 𝑏𝑖𝑔 𝑗 (𝑏𝑖′𝑔 𝑗 ′)−1 ∈ 𝐴, 从而 𝑔 𝑗𝑔 𝑗 ′ ∈ 𝑏−1
𝑖 𝐴𝑏𝑖′ ⊂ 𝐵, 从而 𝑗 = 𝑗 ′, 于是 𝑖 = 𝑖′.

综上 (𝑖, 𝑗) ≠ (𝑖′, 𝑗 ′) 时，𝐴𝑏𝑖𝑔 𝑗 两两不同. 于是将 G 分解作了 𝑚𝑛 个 A 的不同的陪集的并. 说明
[𝐺 : 𝐴] = 𝑛𝑚 = [𝐺 : 𝐵] [𝐵 : 𝐴]. □

Corollary 1.1对于群 G的任意两个子群 A,B，[𝐺 : 𝐴
⋂
𝐵] ≤ [𝐺 : 𝐴] [𝐺 : 𝐵]

Proof 为此我们只需证明 [𝐵 : 𝐴
⋂
𝐵] ≤ [𝐺 : 𝐴] 对于 ∀𝑏, 𝑏′ ∈ 𝐵,从 𝐴

⋂
𝐵𝑏 ≠ 𝐴

⋂
𝐵𝑏′ ↩→ 𝑏(𝑏′)−1 ∉

𝐴
⋂
𝐵 ⊂ 𝐴 ↩→ 𝐴𝑏 ≠ 𝐴𝑏′,于是 [𝐵 : 𝐴

⋂
𝐵] ≤ [𝐺 : 𝐴] □

现在可以证明我们的定理

Theorem 1.13给定群 G的两个子群 A,B，若 [𝐺 : 𝐴]和 [𝐺 : 𝐵]互素，则 [𝐺 : 𝐴
⋂
𝐵] = [𝐺 : 𝐴] [𝐺 :

𝐵],且 𝐺 = 𝐴𝐵

Proof 由前面我们可以看出 [𝐺 : 𝐵]
�� [𝐺 : 𝐴

⋂
𝐵], [𝐺 : 𝐴]

�� [𝐺 : 𝐴
⋂
𝐵], 再由二者互素就得到

[𝐺 : 𝐴
⋂
𝐵] = [𝐺 : 𝐴] [𝐺 : 𝐵].从而 |𝐺 | =

|𝐴| |𝐵 |
|𝐴⋂

𝐵| = |𝐴𝐵 |，于是 𝐺 = 𝐴𝐵. □

1.1.3 元素的阶

Theorem 1.14 :
(1)设 G是群，𝑎, 𝑏 ∈ 𝐺，则 𝑜(𝑎) = 𝑜(𝑎−1), 𝑜(𝑎𝑏) = 𝑜(𝑏𝑎),

(2)设 G是群，𝑔 ∈ 𝐺, 𝑜(𝑔) = 𝑛则 𝑜(𝑔𝑚) =
𝑛

(𝑚, 𝑛)
(3)设 G是群，H是 G的子群, 𝑔 ∈ 𝐺, 𝑜(𝑔) = 𝑛, 𝑔𝑚 ∈ 𝐻, (𝑛, 𝑚) = 1，则 𝑔 ∈ 𝐻
(4)设G是群，𝑔1, 𝑔2 ∈ 𝐺, 𝑜(𝑔1) = 𝑛1, 𝑜(𝑔2) = 𝑛2, (𝑛1, 𝑛2) = 1若 𝑔1𝑔2 = 𝑔2𝑔1，则 𝑜(𝑔1𝑔2) = 𝑛1𝑛2，

当二者不可交换时，无此结论。

1.1.4 共轭算子

Definition 1.4设 G是群，𝑎, 𝑔 ∈ 𝐺，我们规定

𝑎𝑔 = 𝑔−1𝑎𝑔

称作是 a在 g下的共轭变形。类似的对于 G的子群 H，我们同样规定

𝐻𝑔 = 𝑔−1𝐻𝑔

称作 H在 g下的共轭变形。称两个元素 𝑎, 𝑏 ∈ 𝐺 是共轭的，如果存在 𝑔 ∈ 𝐺，使得 𝑎𝑔 = 𝑏.
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可以验证，两个元素的共轭关系是一个等价关系，于是以此可以将 G中所有元素划分为若干
个不相交的等价类，称作共轭类。每个共轭类包含的元素的个数称作此共轭类的长度。

Definition 1.5设 G是群，H是 G的子集，𝑔 ∈ 𝐺，若 𝐻𝑔 = 𝐻，则称元素 g正规化 H，称所有能够
正规化 H的元素的集合

𝑁𝐺 (𝐻) = {𝑔 ∈ 𝐺 |𝐻𝑔 = 𝐻}

是 H在 G中的正规化子。特别的若元素 g满足 ∀ℎ ∈ 𝐻, ℎ𝑔 = ℎ,则称 g中心化 H，所有中心化 H的
元素的集合

𝐶𝐺 (𝐻) = {𝑔 ∈ 𝐺 |ℎ𝑔 = ℎ,∀ℎ ∈ 𝐻}

为 H在 G中的中心化子。规定
𝑍 (𝐺) = 𝐶𝐺 (𝐺)

称作群 G的中心

从定义我们可以看出，每个子集的正规化子都是 G的一个子群.一个群是阿贝尔群当且仅当
它等于它的中心.一个群的中心反映了群 G的交换性的程度.
下面我们思考,给定群 G的一个子集M,与M共轭的子集的个数是多少?

Theorem 1.15 M是群 G的子集,与 M共轭的子集数等于 [𝐺 : 𝑁𝐺 (𝑀)]

Proof 任一与M共轭的子集形如 𝑔−1𝑀𝑔.

𝑔−1𝑀𝑔 = 𝑔′−1𝑀𝑔′ ⇐⇒ 𝑔′𝑔−1𝑀𝑔𝑔′−1 = 𝑀

⇐⇒ 𝑔𝑔′−1 ∈ 𝑁𝐺 (𝑀)

⇐⇒ 𝑁𝐺 (𝑀)𝑔 = 𝑁𝐺 (𝑀)𝑔′

从而M的共轭集数等于M正规化子在 G的陪集数. □

于是我们知道一个集合M的共轭集数一定是 |G|的因子,特别的,取M是单点集,则任意 G中
的元素,与其共轭的元素的个数是 |G|的因子.下面定理就作为上定理的一个应用

Theorem 1.16设 p是素数, G是 𝑝𝑛 阶群.则 G中存在非平凡的中心元.

Proof 𝑎 ∈ 𝐺 是 G的中心元当且仅当 𝑎 只与自己共轭.于是中心元等价于其共轭类阶数为 1.由于
每个元素的共轭元的个数都是 𝑝𝑖.于是将 G拆分作共轭元素类的并时,就有

𝑝𝑛 = 1 + 1 + · · · + 1 + 𝑝𝑖1 + · · · + 𝑝𝑖𝑘

由于等式左右两边 𝑚𝑜𝑑 𝑝 ≡ 0,于是最少有 𝑝个 1阶共轭类,即最少有 p个中心元,或者说有 p-1个
非平凡中心元. □
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1.1.5 习题及解答

习题一：设群 G中两个元素 g,h可交换，𝑜(𝑔) = 𝑚, 𝑜(ℎ) = 𝑛则有

(1) 𝑜(𝑔𝑛ℎ𝑚) =
[𝑚, 𝑛]
(𝑚, 𝑛)；

(2) G中存在阶数为 (𝑚, 𝑛)的元素；
(3) G中存在阶数为 [𝑚, 𝑛] 的元素；

Proof (1):设
𝑚 = (𝑚, 𝑛)𝑚1, 𝑛 = (𝑚, 𝑛)𝑛1

则
[𝑚, 𝑛]
(𝑚, 𝑛) = 𝑛1𝑚1, (𝑚1, 𝑛1) = 1

由于 (𝑔𝑛ℎ𝑚)𝑛1𝑚1 ) = 𝑒,于是
𝑜(𝑔𝑛ℎ𝑚)

�� 𝑛1𝑚1

反之，由于
(𝑔𝑛ℎ𝑚)𝑜 (𝑔𝑛ℎ𝑚 )𝑚1 = 𝑔𝑛𝑚1𝑜 (𝑔𝑛ℎ𝑚 )ℎ𝑚𝑚1𝑜 (𝑔𝑛ℎ𝑚 ) = 𝑒

说明
ℎ𝑚𝑚1𝑜 (𝑔𝑛ℎ𝑚 ) = 𝑒, 𝑛

�� 𝑚𝑚1𝑜(𝑔𝑛ℎ𝑚), 𝑛
�� (𝑛, 𝑚)𝑜(𝑔𝑛ℎ𝑚)

类似的有
𝑚

�� (𝑛, 𝑚)𝑜(𝑔𝑛ℎ𝑚)
于是由 (𝑛1, 𝑚1),可得 𝑛1𝑚1

�� 𝑜(𝑔𝑛ℎ𝑚).综上 [𝑚, 𝑛]
(𝑚, 𝑛) = 𝑛1𝑚1 = 𝑜(𝑔𝑛ℎ𝑚)

(2)考虑元素 𝑔𝑚1 .由定理1.14的 (2) ,立得.
(3)答案有点复杂，为了不搞混，我们重新做个记号。

𝑚 = (𝑚, 𝑛)𝑝, 𝑛 = (𝑚, 𝑛)𝑞, (𝑝, 𝑞) = 1

我们对 (𝑚, 𝑛)进一步分解
(𝑚, 𝑛) = 𝑟1𝑟2𝑟3

其中 𝑟1 只包含那些出现在 p中的素因子，𝑟2 只包含那些出现在 q中的素因子, 𝑟3 不包含 p和 q的
因子.那么 𝑟𝑖 和 𝑟 𝑗 在 𝑖 ≠ 𝑗 时两两互素.更进一步

𝑟1𝑝, 𝑟2𝑞, 𝑟3

三者两两互素.现在，若我们能够找到三个元素，使得它们的阶数分别等于上面三个数，并且两两
可交换，那么由定理1.14的 (4)，将它们乘起来我们就得到一个元素的阶数是 𝑟1𝑟2𝑟3𝑝𝑞 = [𝑚, 𝑛]
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下面我们找出这样的三个元素.

𝑜(𝑔𝑟2𝑟3) = 𝑟1𝑝

𝑜(𝑔𝑟1𝑟2 𝑝) = 𝑟3

𝑜(ℎ𝑟1𝑟3) = 𝑟2𝑞

并且由于它们两两可交换，且阶数互素，由定理1.14可以验证,它们乘起来得到的元素就是所求的
满足条件的元素. □

习题二:设 G是一个群，任取 G中元素 a,b . 𝑜(𝑎) = 𝑚, 𝑜(𝑏) = 𝑛, (𝑚, 𝑛) = 1，若存在某个整数
k,使得 𝑎𝑘 = 𝑏𝑘，证明 𝑚𝑛

�� 𝑘，若 m和 n不互素，举出例子说明结论不成立.

Proof 由于
(𝑏𝑘)𝑚 = (𝑎𝑘)𝑚 = 𝑒

于是 𝑛
�� 𝑚𝑘，由于 (𝑛, 𝑚) = 1，于是 𝑛

�� 𝑘 .类似可得 𝑚
�� 𝑘 .再次由它们二者互素，于是 𝑚𝑛

�� 𝑘
反例：考虑 (Z6, +) 中的元素 1 和 2. 则 𝑚 = 𝑜(1) = 6, 𝑛 = 𝑜(2) = 3, 存在 𝑘 = 6 使得 (2)6 =

(1)6 = 0,但 𝑚𝑛不整除 𝑘 . □

习题三：除平凡子群外无其它子群的群必是素数阶循环群.

Proof 设 𝑜(𝐺) = 𝑎𝑏，∀𝑔 ∈ 𝐺,由于 G中无子群，于是 𝑜(𝑔) = 𝑎𝑏，但我们任可取 𝑔𝑎, 𝑜(𝑔𝑎) = 𝑏.此
时 ⟨𝑔𝑎⟩是 G的非平凡子群,矛盾. □

1.2 正规子群、商群、群同态

1.2.1 正规子群和商群

前言：假设给定了 N是群 G的子群，对 G作 N的陪集分解，取 𝐺 是 N的全部右陪集构成
的集合，即 𝐺 = {𝑁𝑎 |𝑎 ∈ 𝑅},其中 𝑅是右陪集代表系.我们希望在 𝐺 上定义运算赋予群结构.最自
然的是取运算 (𝑁𝑎)(𝑁𝑏) = 𝑁𝑎𝑏.为此我们需要检验此定义不依赖于代表元的选取，即对于每一个
𝑎′ ∈ 𝑁𝑎, 𝑏′ ∈ 𝑁𝑏都有 𝑁𝑎′𝑏′ = 𝑁𝑎𝑏.这相当于要求

𝑁𝑎𝑁𝑏 = 𝑁𝑎𝑏 ⇐⇒ 𝑁𝑎𝑁 = 𝑁𝑎 ⇐⇒ 𝑁𝑎𝑁𝑎−1 = 𝑁 ⇐⇒ 𝑎𝑁𝑎−1 ⊂ 𝑁, ∀𝑎 ∈ 𝐺

换句话说，我们要求 N是一个自共轭子群，即只有 N自身是 N的共轭子群.于是我们引出正规子
群的定义：

Definition 1.6称群 G的子群 N是 G的正规子群，如果 𝑁𝑔 ⊂ 𝑁, ∀𝑔 ∈ 𝐺.记作 𝑁 ⊴ 𝐺.
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Example 1.2 :
如果 𝐻 ⩽ 𝐺 且 [𝐺 : 𝐻] = 2,则 𝐻 ⊴ 𝐺.
证: ∀𝑥 ∈ 𝐺, 若 𝑥 ∈ 𝐻, 则 𝐻𝑥 = 𝐻 = 𝑥𝐻; 若 𝑥 ∉ 𝐻, 则 𝐻𝑥

⋂
𝐻 = ∅, 𝑥𝐻⋂

𝐻 = ∅, 且此时有
𝐺 = 𝐻

⋃
𝐻𝑥 = 𝐻

⋃
𝑥𝐻,于是 𝐻𝑥 = 𝑥𝐻.总之有 𝐻𝑥 = 𝑥𝐻,即 𝐻 ⊴ 𝐺.

Remark:注意 𝑎𝐻 = 𝐻𝑎只是集合相等,绝不意味着元素乘积可以交换.

Theorem 1.17 (正规子群的等价定义)设 G是群，下面六条等价
(1) N是 G的正规子群.
(2) 𝑁𝑔 = 𝑁, ∀𝑔 ∈ 𝐺，因此正规子群也称自共轭子群，因其群中的所有元素的共轭仍在此群中.
(3) 𝑁𝐺 (𝑁) = 𝐺.
(4)若 𝑛 ∈ 𝑁，则 n所属的 G的共轭元素类 𝐶 (𝑛) ⊂ 𝑁，即 N是由 G的若干整数个共轭类组成.
(5) N在 G中的每个左陪集都是一个右陪集. 𝑁𝑔 = 𝑔𝑁 .

由于正规子群的左陪集和右陪集重合，因此对于正规子群只讨论其陪集，而不用区分左右.显
然阿贝尔群的子群都是正规子群，每个群都有两个平凡的正规子群 𝐺 和 {𝑒}..有些群只有平凡的
正规子群，于是我们定义：

Definition 1.7若群 G只有平凡的正规子群，称群 G是单群.

我们知道一个交换群，若是单群，意味着其无非平凡子群，由上节习题1.1.5,此时其一定是素
数阶循环群. 然而非交换单群则十分复杂，决定所有有限非交换单群多年来一直是有限群论的一
个核心问题.在可解群一节我们可以获得非交换群是单群的一些必要条件.
下面阐述一些获得正规子群的方法.

Theorem 1.18给定一列正规子群 𝑁1 · · · 𝑁𝑠，则
⋂𝑠

𝑖=1 𝑁𝑖 和 ⟨𝑁1, · · · , 𝑁𝑠⟩仍然是正规子群.

Proof

∀𝑔 ∈ 𝐺, 𝑛 ∈
𝑠⋂
𝑖=1

𝑁𝑖, 𝑛
𝑔 ∈ 𝑁𝑖, 𝑖 = 1, 2, · · · , 𝑠.

于是是正规子群，另一个类似可证. □

下面我们思考，给定任意一个群 G的子集M,怎么找到一个最小的正规子群包含这个子集M
呢?以 𝑀𝐺 记作是包含M的最小正规子群,则应有

{𝑚𝑔 | ∀𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀} ⊂ 𝑀𝐺

同时,由于 𝑀𝐺 是包含上述子集的最小群,于是

⟨𝑚𝑔 | ∀𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀⟩ ⊂ 𝑀𝐺

到这里就足够使得其是正规的了,于是包含任意集合M的最小正规子群就是
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𝑀𝐺 = ⟨𝑚𝑔 | ∀𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀⟩.

称其是M在 G中的正规闭包.
又我们思考，给定任意一个群 G，如何找到一个群，使得它在其中正规呢？回顾上一节提到

的正规化子

Theorem 1.19设 𝐺 为群, 𝐻 是 𝐺 的子群.定义 𝐻 的正规化子 (normalizer)为

𝑁 (𝐻) =
{
𝑔 ∈ 𝐺 | 𝑔𝐻𝑔−1 = 𝐻

}
.

则 𝑁 (𝐻)是 𝐺 的子群, 𝐻 是 𝑁 (𝐻)的正规子群.

Proof (1)对任意的 𝑥, 𝑦 ∈ 𝑁 (𝐻),有 𝑥𝐻𝑥−1 = 𝐻, 𝑦𝐻𝑦−1 = 𝐻,则

𝑥−1𝐻𝑥 = 𝑥−1 (
𝑥𝐻𝑥−1) 𝑥 = 𝐻,

(𝑥𝑦)𝐻 (𝑥𝑦)−1 = 𝑥
(
𝑦𝐻𝑦−1) 𝑥−1 = 𝑥𝐻𝑥−1 = 𝐻.

55从而 𝑥−1, 𝑥𝑦 ∈ 𝑁 (𝐻),所以 𝑁 (𝐻) 是 𝐺 的子群.
(2)对任意的 𝑥 ∈ 𝑁 (𝐻),由 𝑁 (𝐻) 的定义知

𝑥𝐻𝑥−1 = 𝐻,

所以 𝐻是 𝑁 (𝐻)的正规子群.由此可以看出, 𝑁 (𝐻)是将 𝐻作为正规子群的 𝐺的最大的子群。特别
地,若 𝐻 ⊴ 𝐺,则 𝑁 (𝐻) = 𝐺 □

现在我们回到前言提到的内容, 有了正规子群我们就可以在正规子群陪集的集合上定义二元
运算, 使得其是一个群, 并且此时不需要考虑到底是左陪集还是右陪集, 因其在正规子群下是一样
的.我们来正式的定义它.

Definition 1.8给定 𝑁 ⊴ 𝐺,记 𝐺 = {𝑁𝑔 |𝑔 ∈ 𝐺}.定义其上乘法 𝑁𝑎 ∗ 𝑁𝑏 = 𝑎𝑁 ∗ 𝑁𝑏 = 𝑎𝑁𝑏 = 𝑁𝑎𝑏.则
𝐺 在运算 (∗) 下封闭,并且成为一个群.将其称作 G对 N的商群,记作 𝐺 = 𝐺/𝑁 .

如果 G是有限群,由 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒定理立马有 |𝐺/𝑁 | = [𝐺 : 𝑁] =
|𝐺 |
|𝑁 |.

我们将下定理作为商群应用的一个例子

Theorem 1.20 (A.L.Cauchy)设 𝐺 是一个 𝑝𝑛阶有限交换群,其中 𝑝 是一个素数,则 𝐺 有 𝑝 阶元素,
从而有 𝑝阶子群.

Proof 对 𝑛用数学归纳法.当 𝑛 = 1时, 𝐺 是 𝑝阶循环群,则 𝐺 的一个生成元就是一个 𝑝阶元,定理
成立.
假设定理对阶为 𝑝𝑘 (1 ⩽ 𝑘 < 𝑛) 的交换群成立,下证对阶为 𝑝𝑛的交换群 𝐺 定理成立.
在 𝐺 中任取 𝑎 ≠ 𝑒.若 𝑝 | |𝑎 |,令

|𝑎 | = 𝑝𝑠,
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则 |𝑎𝑠 | = 𝑝,定理成立.
若 𝑝 ∤ |𝑎 |,令 |𝑎 | = 𝑚 > 1,则 (𝑚, 𝑝) = 1.由于

𝑚 | 𝑝𝑛,

故 𝑚 | 𝑛.令 𝑁 = ⟨𝑎⟩,则由于 𝐺 是交换群,故

|𝐺/𝑁 | = 𝑝 · 𝑛
𝑚
, 1 ⩽

𝑛

𝑚
< 𝑛.

于是由归纳假设,群 𝐺/𝑁 有 𝑝阶元,任取其一,设为 𝑏𝑁 ,且 |𝑏 | = 𝑟,则

(𝑏𝑁)𝑟 = 𝑏𝑟𝑁 = 𝑁,

从而 𝑝 | 𝑟.令 𝑟 = 𝑝𝑡,则 |𝑏𝑡 | = 𝑝. □

实际上,当 𝐺 是非交换群时,这个定理仍成立.此处不再赘述.

1.2.2 群同态和群同构

一个群到群的映射, 如果保持乘法运算, 则称该映射是一个群同态映射. 若该同态映射同时还
是双射,则称是群同构映射.
根据定义立马可以得到群同态的一些简单性质：

Theorem 1.21设 𝜙是群 𝐺 到群 𝐺 ′ 的同态映射, 𝑒与 𝑒′ 分别是 𝐺 与 𝐺 ′ 的单位元, 𝑎 ∈ 𝐺,则
(1) 𝜙将 𝐺 的单位元映到 𝐺 ′ 的单位元,即 𝜙(𝑒) = 𝑒′;
(2) 𝜙将 𝑎的逆元映到 𝜙(𝑎)的逆元,即 𝜙

(
𝑎−1) = (𝜙(𝑎))−1;

(3)设 𝑛是任一整数,则 𝜙 (𝑎𝑛) = (𝜙(𝑎))𝑛;
(4)如果 |𝑎 |有限,则 |𝜙(𝑎) | |𝑎 |.

Proof (1)因 𝑒与 𝑒′ 分别是 𝐺 与 𝐺 ′ 的单位元,所以

𝑒′ · 𝜙(𝑒) = 𝜙(𝑒) = 𝜙(𝑒 · 𝑒) = 𝜙(𝑒) · 𝜙(𝑒),

从而由消去律得
𝑒′ = 𝜙(𝑒),

即 𝜙(𝑒)为 𝐺 ′ 的单位元.
(2)直接计算可得

𝜙(𝑎) · 𝜙
(
𝑎−1) = 𝜙 (

𝑎𝑎−1) = 𝜙(𝑒) = 𝑒′ = 𝜙(𝑎) · (𝜙(𝑎))−1.

65从而又由消去律得
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𝜙
(
𝑎−1) = (𝜙(𝑎))−1

即 𝜙
(
𝑎−1) 为 𝜙(𝑎) 的逆元.
(3)当 𝑛 = 0时,

𝜙
(
𝑎0) = 𝜙(𝑒) = 𝑒′ = (𝜙(𝑎))0.

当 𝑛 > 0时,

𝜙 (𝑎𝑛) = 𝜙
(
𝑎𝑛−1𝑎

)
= 𝜙

(
𝑎𝑛−1) 𝜙(𝑎) = · · · = (𝜙(𝑎))𝑛−1𝜙(𝑎) = (𝜙(𝑎))𝑛.

当 𝑛 < 0时,
𝜙 (𝑎𝑛) = 𝜙

( (
𝑎−1)−𝑛) = (

𝜙
(
𝑎−1) )−𝑛 =

(
𝜙(𝑎)−1)−𝑛 = (𝜙(𝑎))𝑛.

(4)设 |𝑎 | = 𝑟,则
(𝜙(𝑎))𝑟 = 𝜙 (𝑎𝑟 ) = 𝜙(𝑒) = 𝑒′,

所以 |𝜙(𝑎) | | |𝑎 |. □

Theorem 1.22设 𝜙是群 𝐺 到 𝐺 ′ 的同态映射, 𝐻 与 𝐾 分别是 𝐺 与 𝐺 ′ 的子群,则
(1) 𝜙(𝐻) 是 𝐺 ′ 的子群;
(2) 𝜙−1(𝐾)是 𝐺 的子群;
(3)如果 𝐻 是 𝐺 的正规子群,则 𝜙(𝐻) 是 𝜙(𝐺)的正规子群;
(4)如果 𝐾 是 𝐺 ′ 的正规子群,则 𝜙−1(𝐾) 是 𝐺 的正规子群.

Proof (1)对任意的 ℎ1, ℎ2 ∈ 𝐻,有 ℎ1ℎ
−1
2 ∈ 𝐻,所以

𝜙 (ℎ1) (𝜙 (ℎ2))−1 = 𝜙 (ℎ1) 𝜙
(
ℎ−1

2
)
= 𝜙

(
ℎ1ℎ

−1
2

)
∈ 𝜙(𝐻),

所以 𝜙(𝐻) 是 𝐺 ′ 的子群.
(2)对任意的 𝑎, 𝑏 ∈ 𝜙−1(𝐾),有 𝜙(𝑎), 𝜙(𝑏) ∈ 𝐾 ,则

𝜙
(
𝑎𝑏−1) = 𝜙(𝑎)𝜙 (

𝑏−1) = 𝜙(𝑎)𝜙(𝑏)−1 ∈ 𝐾,

于是 𝑎𝑏−1 ∈ 𝜙−1(𝐾),所以 𝜙−1(𝐾) 是 𝐺 的子群.
(3) 由 (1) 知 𝜙(𝐻) 是 𝜙(𝐺) 的子群. 又对任意的 𝑎′ ∈ 𝜙(𝐺), ℎ′ ∈ 𝜙(𝐻), 有 𝑎 ∈ 𝐺, ℎ ∈ 𝐻, 使

𝜙(𝑎) = 𝑎′, 𝜙(ℎ) = ℎ′,则 𝑎ℎ𝑎−1 ∈ 𝐻.于是

𝑎′ℎ′𝑎′−1 = 𝜙(𝑎)𝜙(ℎ) (𝜙(𝑎))−1 = 𝜙(𝑎)𝜙(ℎ)𝜙
(
𝑎−1)

66 = 𝜙
(
𝑎ℎ𝑎−1) ∈ 𝜙(𝐻),所以 𝜙(𝐻) 是 𝜙(𝐺)的正规子群.

(4)由 (2)知, 𝜙−1(𝐾)是 𝐺的子群.又对任意的 𝑎 ∈ 𝐺, ℎ ∈ 𝜙−1(𝐾),则 𝜙(ℎ) ∈ 𝐾 ,而 𝐾 是 𝐺 ′的正
规子群,故

𝜙
(
𝑎ℎ𝑎−1) = 𝜙(𝑎)𝜙(ℎ)𝜙(𝑎)−1 ∈ 𝐾.
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从而
𝑎ℎ𝑎−1 ∈ 𝜙−1(𝐾),

所以 𝜙−1(𝐾)是 𝐺 的正规子群. □

在开始同态基本定理前我们先定义一些类似与线性空间中线性映射相似的东西.

Definition 1.9设 𝛼 : 𝐺 → 𝐻 是一个群同态映射,则

𝐾𝑒𝑟 𝛼 := {𝑔 ∈ 𝐺 | 𝑔𝛼 = 1𝐻}

称作是该同态映射的核
𝐺𝛼 := {𝑔𝛼 | 𝑔 ∈ 𝐺}

称作是同态映射的像集.可以验证 𝐾𝑒𝑟 𝛼 ⊴ 𝐺,而 𝐺𝛼 ≤ 𝐻.

Theorem 1.23 (同态基本定理) :
(1)任给 G的正规子群 N,都对应一个 G的 G/N的同态映射,称作是 G到 G/N的自然同态.
(2)给定一个 𝛼 : 𝐺 → 𝐻 是同态映射.则 𝐾𝑒𝑟 𝛼 ⊴ 𝐺,且 𝐺𝛼 � 𝐺/𝐾𝑒𝑟 𝛼

Proof 记 𝐾 = 𝑘𝑒𝑟 𝛼,设 𝐺/𝐾 = {𝑔𝐾 | 𝑔 ∈ 𝐺},作 𝐺/𝐾 → 𝐺𝛼 的映射

𝜎 : 𝑔𝐾 → 𝑔𝛼

则由于
𝑔1𝐾 = 𝑔2𝐾 ⇐⇒ 𝑔−1

1 𝑔2 ∈ 𝐾 ⇐⇒ (𝑔−1
1 𝑔2)𝛼 = 1𝐻 ⇐⇒ 𝑔𝛼

1 = 𝑔𝛼
2

于是 𝜎是一个单射.显然也是一个满同态.于是 𝐺𝛼 � 𝐺/𝐾 □

这个定理告诉我们：群G的同态像在同构意义下只能是G的商群！定理中给出的 𝜎 : 𝐺/𝐾𝑒𝑟 𝛼 →
𝐺𝛼 称作是正则同构.

下面我们给出几个同态基本定理应用的例子.

Example 1.3不难验证

𝛼 : Z→ Z𝑛
𝑎𝛼 = 𝑎

是两个加法群之间的满同态, 𝐾𝑒𝑟 𝛼 = 𝑛Z,于是我们得到加法群同构 Z/𝑛Z � Z𝑛.从而有时候我们可
以整数模 𝑛加法群 Z𝑛 记作 Z/𝑛Z的形式.

Example 1.4映射 𝑑𝑒𝑡 : 𝐺𝐿 (𝑛,C) → C∗ 是乘法群的满同态,它将每一个可逆复方阵M映作M的行
列式.从而

𝐾𝑒𝑟 (𝑑𝑒𝑡) = {𝑀 ∈ 𝐺𝐿 (𝑛,C) | 𝑑𝑒𝑡 (𝑀) = 1} = 𝑆𝐿 (𝑛,C)

因此 𝑆𝐿 (𝑛,C)是 𝐺𝐿 (𝑛,C)的正规子群,并且有 𝐺𝐿/𝑆𝐿 � C∗.
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Theorem 1.24 (第一同构定理)设 𝜑是群 𝐺 到群 𝐺̄ 的一个同态满射,又 𝑘𝑒𝑟 𝜑 ⊆ 𝑁 ⊴ 𝐺, 𝑁̄ = 𝜑(𝑁),
则

𝐺/𝑁 � 𝐺̄/𝑁̄ .

Proof 因为 𝑁 ⊴ 𝐺,又 𝜑是满同态,故 𝑁̄ = 𝜑(𝑁) ⊴ 𝐺̄.现在令

𝜏 : 𝐺/𝑁 → 𝐺̄/𝑁̄,

𝑥𝑁 → 𝜑(𝑥)𝜑(𝑁) (∀𝑥 ∈ 𝐺).

下证 𝜏是商群 𝐺/𝑁 到 𝐺̄/𝑁̄ 的一个同构映射.
(1) 𝜏是映射:设 𝑎𝑁 = 𝑏𝑁 (𝑎, 𝑏 ∈ 𝐺),则 𝑎−1𝑏 ∈ 𝑁 .但由于 𝜑是同态映射,故

𝜑
(
𝑎−1) 𝜑(𝑏) = 𝜑 (

𝑎−1𝑏
)
∈ 𝜑(𝑁) = 𝑁̄ .

从而 𝜑(𝑎)𝑁̄ = 𝜑(𝑏)𝑁̄ ,即 𝜏是 𝐺/𝑁 到 𝐺̄/𝑁̄ 的映射.
(2) 𝜏是满射:任取 𝑎̄𝑁̄ ∈ 𝐺̄/𝑁̄ (𝑎̄ ∈ 𝐺̄),则因 𝜑是满同态,故有 𝑎 ∈ 𝐺 使 𝜑(𝑎) = 𝑎̄.从而在 𝜏之下

𝑎̄𝑁̄ 有逆像 𝑎𝑁 ,即 𝜏是满射.
(3) 𝜏是单射:设 𝜑(𝑎)𝑁̄ = 𝜑(𝑏)𝑁̄ ,则

𝜑
(
𝑎−1𝑏

)
= 𝜑(𝑎)−1𝜑(𝑏) ∈ 𝑁̄ .

但 𝜑为满同态且 𝑁̄ = 𝜑(𝑁),故有 𝑐 ∈ 𝑁 使

𝜑
(
𝑎−1𝑏

)
= 𝜑(𝑐)

此即
𝑣𝑎𝑟 𝑝ℎ𝑖

(
𝑐−1𝑎−1𝑏

)
= 𝑒,

其中 𝑒是 𝐺̄ 的单位元.于是 𝑐−1𝑎−1𝑏 ∈ ker 𝜑.但是 ker 𝜑 ⊆ 𝑁 ,故

𝑎−1𝑏 = 𝑐 · 𝑐−1𝑎−1𝑏 ∈ 𝑁.

从而 𝑎𝑁 = 𝑏𝑁 ,即 𝜏是单射.因此, 𝜏是双射.又因为显然在 𝜏之下有

𝑎𝑁 · 𝑏𝑁 = 𝑎𝑏𝑁 → 𝜑(𝑎𝑏)𝑁̄ = 𝜑(𝑎)𝜑(𝑏)𝑁̄ = 𝜑(𝑎)𝑁̄ · 𝜑(𝑏)𝑁̄,

故 𝜏是 𝐺/𝑁 到 𝐺̄/𝑁̄ 的同构映射.因此

𝐺/𝑁 � 𝐺̄/𝑁̄ .

Theorem 1.25 (第二同构定理)设 𝐻为 𝐺的子群, 𝐾为 𝐺的正规子群,则 𝐻
⋂
𝐾是 𝐻的正规子群且

𝐻/(𝐻
⋂

𝐾) � 𝐻𝐾/𝐾.
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Proof 令
𝜙 :𝐻 → 𝐻𝐾/𝐾,

ℎ → ℎ𝐾

(1)显然 𝜙是 𝐻 到 𝐻𝐾/𝐾 的映射.
(2)对任意的 ℎ𝑘𝐾 ∈ 𝐻𝐾/𝐾 ,其中 ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 ,由于 ℎ𝑘𝐾 = ℎ𝐾 ,故

𝜙(ℎ) = ℎ𝐾 = ℎ𝑘𝐾,

所以 𝜙是 𝐻 到 𝐻𝐾/𝐾 的满映射.
(3)对任意的 ℎ1, ℎ2 ∈ 𝐻,

𝜙 (ℎ1ℎ2) = (ℎ1ℎ2) 𝐾 = ℎ1𝐾 · ℎ2𝐾 = 𝜙 (ℎ1) 𝜙 (ℎ2) ,

所以 𝜙是 𝐻 到 𝐻𝐾/𝐾 的满同态.
(4)同态的核

ker 𝜙 = {ℎ ∈ 𝐻 | 𝜙(ℎ) = 𝐾}

= {ℎ ∈ 𝐻 | ℎ𝐾 = 𝐾}

= {ℎ ∈ 𝐻 | ℎ ∈ 𝐾} = 𝐻
⋂

𝐾

(5)由同态基本定理知, 𝐻
⋂
𝐾 = ker 𝜙为 𝐻 的正规子群,且

𝐻/(𝐻
⋂

𝐾) � 𝐻𝐾/𝐾

1.2.3 习题及解答

习题一：证明单群的同态像仍是单群.

Proof 设 G是单群，𝛼是一个同态映射.若 𝐺𝛼 中有正规子群 H.则 ∀𝑔 ∈ 𝐺

𝑔𝛼𝐻 = 𝐻𝑔𝛼

⇒ (𝑔𝛼𝐻)𝛼−1
= (𝐻𝑔𝛼)𝛼−1

⇒ 𝑔𝐻𝛼−1
= 𝐻𝛼−1

𝑔

⇒ 𝐻𝛼−1
是 G中单群

⇒𝐻 = {𝑒} or 𝐺𝛼

⇒𝐺𝛼是单群

习题二：证明若 G是一个 𝑝𝑛阶群，𝑝是一个素数，证明 G有 𝑝阶元.
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Proof 对 n作归纳法.当 n=1时结论显然成立.
现在假设 𝑛 ≤ 𝑘 时结论成立.
(1)若有一个子群 H, 𝑝 ∤ [𝐺 : 𝐻].则由于

|𝐺 | = |𝐻 | [𝐺 : 𝐻] , 𝑝 | |𝐻 |

于是由假设知 H有 𝑝阶元,从而 G中有 𝑝阶元.
(2)若对任意子群 H, 𝑝 ∤ [𝐺 : 𝐻] 则考虑 𝑁 (𝑎𝑖),其中 𝑁 (𝑎𝑖)是 𝑎𝑖 的正规化子.则有共轭类分解,

导致

|𝐺 | = |𝐶 | +
𝑚∑
𝑖=1

[𝐺 : 𝑁 (𝑎𝑖]

进而 𝑝 | |𝐶 |于是 C中有 𝑝阶元. □

习题三:群 G的变换
𝜙 : 𝑥 ↦→ 𝑥−1 (𝑥 ∈ 𝐺)

是 G的自同构当且仅当 G是阿贝尔群.

Proof 显然这样的映射是一个双射.若是自同构,则 ∀𝑎, 𝑏 ∈ 𝐺, 𝜙(𝑎𝑏) = (𝑎𝑏)−1 = 𝑏−1𝑎−1,又 𝜙(𝑎𝑏) =
𝜙(𝑎)𝜙(𝑏) = 𝑎−1𝑏−1,于是 G是交换群.反之若 G是交换群,则 𝜙(𝑎𝑏) = 𝑏−1𝑎−1 = 𝑎−1𝑏−1 = 𝜙(𝑎)𝜙(𝑏),
于是是同态,进而是自同构. □

习题四：举例说明：正规子群的正规子群不一定是正规子群
例：对于交错群 𝐴4 ,我们知道: 𝐴4 的非平凡正规子群只有克莱因群 𝐾4 � Z/2 × Z/2.但 𝐾4 有

正规子群 Z/2.于是正规子群 𝐾4 的正规子群 Z/2不是 𝐴4 的正规子群.

1.3 自同构群

1.3.1 自同构

一个 G到 G自身的群同构映射称作是自同构,用 Aut(G)表示 G的所有自同构映射的集合.讨
论任意群上的任意一个自同构是抽象的，但我们可以找出一些具体的自同构.在群 G中任取一个
元素 𝑎 ∈ 𝐺,映射

𝜎𝑎 (𝑥) := 𝑎𝑥𝑎−1, ∀𝑥 ∈ 𝐺

定义了一个 G的自同构.所有这样的自同构组成的集合在一般映射运算下构成群，称作内自同构
群，记作 InnG.

𝐼𝑛𝑛𝐺 :=
{
𝜎𝑎 | 𝑎 ∈ 𝐺, ∀𝑥 ∈ 𝐺, 𝜎𝑎 (𝑥) = 𝑎𝑥𝑎−1}

自同构映射和内自同构映射组成的集合在映射的运算下构成群，分别称作自同构群和内自同
构群.很快我们就可以发现,
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𝐼𝑛𝑛𝐺 ⊴ 𝐴𝑢𝑡𝐺

显然一个群的自同构群和该群自身有关，那么自然就想问：两个同构的群，它们的自同构群是否
同构？答案是肯定的.

Theorem 1.26设 G和 H是两个群，有 𝐺 � 𝐻,则 𝐴𝑢𝑡 (𝐺) � 𝐴𝑢𝑡 (𝐻).

Proof 由于 𝐺 � 𝐻,于是有一个同构映射

𝛼 : 𝐺 → 𝐻

下面对于 ∀𝛽 ∈ 𝐴𝑢𝑡 (𝐺) 考虑映射

𝑓 : 𝐴𝑢𝑡 (𝐺) → 𝐴𝑢𝑡 (𝐻)

𝛽 → 𝛼𝛽𝛼−1

首先我们验证 𝛼𝛽𝛼−1 确是一个 H上的自同构.

𝐻
𝛼−1

−→ 𝐺
𝛽−→ 𝐺

𝛼−→ 𝐻

由同构关系的传递性知，𝛼𝛽𝛼−1 确是一个 H上的自同构.我们接下来只需验证 𝑓 是一个保运算的
双射即可.若 𝛼𝛽𝛼−1 = 𝛼𝛽′𝛼−1，则有 𝛽 = 𝛽′,于是 𝑓 是单射.对于 ∀𝜇 ∈ 𝐴𝑢𝑡 (𝐻)由于

𝐺
𝛼−→ 𝐻

𝜇−→ 𝐻
𝛼−1

−→ 𝐺

于是 𝛼−1𝜇𝛼是一个 G上的自同构，并且其在 𝑓 下的像就是 𝜇.于是 𝑓 是双射.容易验证 𝑓 还保持
运算，于是 𝑓 是 Aut(G)到 Aut(H)的同构映射. □

但据此我们能说明，不同构的两个群它们的自同构群一定不同吗，这是不能的事实上我们有
反例.

Example 1.5 (不同构的群有相同自同构群)考虑 𝐺 = {𝑒}, 𝐻 = Z2，它们不同构，但自同构群中都
只有恒等映射.

接下来再成列一些常用的相关定理

Theorem 1.27 (自同构诱导的商群上的自同构) 𝑁 ⊴ 𝐺, 𝛼 ∈ 𝐴𝑢𝑡𝐺,若 𝑁 𝛼 = 𝑁，则

𝛼 : 𝑁𝑔 ↦→ 𝑁𝑔𝛼

是商群 𝐺/𝑁 上的一个自同构，我们称是 𝛼诱导的自同构.

Proof 显然这是一个满射，因为 ∀𝑁𝑔 ∈ 𝐺/𝑁，存在 𝑔′ ∈ 𝐺,使得 (𝑔′)𝛼 = 𝑔. (这是由 𝛼是自同构保
证的.)于是 (𝑁𝑔′)𝛼 = 𝑁𝑔′ = 𝑁𝑔.同时这又是一个单射，因为若 𝑁𝑔𝛼

1 = 𝑁𝑔𝛼
2 则我们有
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𝑔𝛼
1 (𝑔𝛼

2 )−1 ∈ 𝑁

⇒(𝑔1𝑔
−1
2 )𝛼 ∈ 𝑁

⇒𝑔1𝑔
−1
2 ∈ 𝑁

⇒𝑁𝑔1 = 𝑁𝑔2

因此是单射.同时很容易验证保持运算，于是是同构. □

Theorem 1.28 (N/C定理) 𝐻 ≤ 𝐺, 𝑁𝐺 (𝐻)/𝐶𝐺 (𝐻) 同构于 AutG的一个子群.

Proof
∀𝑔 ∈ 𝑁𝐺 (𝐻) =

{
𝑔 ∈ 𝐺 |𝑔−1𝐻𝑔 = 𝐻

}
都对应一个 H的自同构

𝜎𝑔 : ℎ ↦→ ℎ𝑔 ∈ 𝐴𝑢𝑡𝐺

于是考虑同态映射

𝑓 : 𝑁𝐺 (𝐻) → 𝐴𝑢𝑡 (𝐻)

𝑔 ↦→ 𝜎𝑔

显然 𝐶𝐺 (𝐻)是此同态映射的核，于是由同态基本定理知，此定理得证. □

接下来我们研究内自同构群.由于内自同构来源于G中的元素,因此很容易建立二者之间的关
系,事实上我们有

Theorem 1.29 𝐼𝑛𝑛𝐺 � 𝐺/𝐶 (𝐺)

Proof 考虑 G到 InnG的满同态,在此同态下 C(G)是同态核,于是由同态基本定理即得. □

由此可以立得一个群同构与它的内自同构群的充分条件

Corollary 1.2当 G是非交换单群时, 𝐶 (𝐺) = {𝑒}, 𝐼𝑛𝑛𝐺 � 𝐺.

于是我们发现了一些有趣的问题, 我们可以问出很多类似的问题, 例如: 什么时候一个群的自
同构只有内自同构? 一个自同构群的自同构群和它有什么关系? 一个群是否能同构与它的自同构
群?...为了探究这些问题,我们需要从简单的开始着手,锻炼我们的思维.

首先是,如何确定一个群的自同构群?我们以整数加群 (Z, +)为例,试确定其自同构群:
解: 设 𝑓 是 Z 的任一自同构, 则它只能把 0 ↦→ 0. 设它把 1 映作 𝑓 (1) = 𝑘 . 故对于 ∀𝑥 ∈ Z,

𝑓 (𝑥) = 𝑘𝑥.由于是满射,因此存在 𝑥0, 𝑓 (𝑥0) = 𝑘𝑥 = 1.由于 𝑘 和 𝑥 都是整数,因此只能有 𝑘 = ±1.说
明其上只有两种自同构.

𝑓1(𝑥) = 𝑥, 𝑥 ∈ Z

𝑓2(𝑥) = −𝑥, 𝑥 ∈ Z

于是我们分析自同构时候,可以考虑先分析群中生成元的像,从而决定此同构映射的约束条件.
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1.3.2 完全群

在前面我们实际上已经注意到这种特殊的群了.

Definition 1.10称 G是完全群，如果 𝐶𝐺 = {𝑒} , 𝐴𝑢𝑡𝐺 = 𝐼𝑛𝑛𝐺.

Remark 1.1由定理1.29,知一个群是完全群当且仅当 𝐶𝐺 = {𝑒} , 𝐴𝑢𝑡𝐺 � 𝐺.

我们可以很快举出例子

Example 1.6 𝑆3 是完全群.证明只需说明 |𝐴𝑢𝑡𝑆3 | ≤ 6,并且由于 𝐶 = {𝑒},于是 𝐼𝑛𝑛𝑆3 � 𝑆3.(Th1.29)
于是 |𝐼𝑛𝑛𝑆3 | = |𝑆3 | = 6.说明 𝐴𝑢𝑡𝑆3 = 𝐼𝑛𝑛𝑆3.事实上我们可以说明 𝑛 ≠ 6时 𝑆𝑛 都是完全群.

下面定理给出了更丰富的完全群.

Theorem 1.30设 G是非交换单群，则 𝐴𝑢𝑡 (𝐺) 是完全群.

Proof 为了方便，我们简记 𝐼 = 𝐼𝑛𝑛𝐺, 𝐴 = 𝐴𝑢𝑡𝐺.我们将分三步证明:
(1): 𝐶𝐴(𝐼) = {𝑒};
∀𝜉 ∈ 𝐶𝐴(𝐼), 𝜎 ∈ 𝐼, 𝜉−1𝜎𝑔𝜉 = 𝜎𝑔, ∀𝑔 ∈ 𝐺.其中 𝜎𝑔 是同前面定义的 𝑔诱导的内自同构.则对于

∀𝑥 ∈ 𝐺, ∃𝑦 ∈ 𝐺, 𝑦 𝜉 = 𝑥.于是

𝑥 𝜉
−1𝜎𝑔 𝜉 = 𝑦𝜎𝑔 𝜉 = (𝑔−1𝑦𝑔) 𝜉 = 𝑦 𝜉 𝜎𝑔𝜉 = 𝑥𝜎𝑔𝜉 .

最终得到 𝜉−1𝜎𝑔𝜉 = 𝜎𝑔𝜉 ,即 𝜎𝑔 = 𝑠𝑖𝑔𝑚𝑎𝑔𝜉 .由于 𝜎 是一个 𝐺 → 𝐼 的同构映射，于是 𝑔 = 𝑔 𝜉 ,从而
𝜉 = 1，是恒等映射.

(2):设 𝛼 ∈ 𝐴𝑢𝑡 (𝐴),则 𝐼𝛼 = 𝐼;此处暂略
(3):设 𝛼 ∈ 𝐴𝑢𝑡 (𝐴),则 𝛼 ∈ 𝐼𝑛𝑛(𝐴);此处暂略 □

1.4 可解群

1.4.1 可解群基本定义以及性质

引言：我们探究回正规子群的商群.现在有一个这样的问题，一个群可能不是交换群，但它的
商群可能是交换群.于是我们思考，什么样的正规子群的商群是交换群.等价的，我们只需要去找
同态映射 𝜎 : 𝐺 → 𝐺, 𝐼𝑚(𝜎) 是交换群的条件. (这是由同态基本定理 𝐼𝑚(𝜎) � 𝐺/𝐾𝑒𝑟 (𝜎),而 𝐾𝑒𝑟

是 G的正规子群).
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𝐼𝑚𝜎是交换群 ⇐⇒ 𝜎(𝑥)𝜎(𝑦) = 𝜎(𝑦)𝜎(𝑥), ∀𝑥, 𝑦 ∈ 𝐺

⇐⇒ 𝜎(𝑥𝑦𝑥−1𝑦−1) = 𝑒, ∀𝑥, 𝑦 ∈ 𝐺

⇐⇒ 𝑥𝑦𝑥−1𝑦−1 ∈ 𝐾𝑒𝑟𝜎, ∀𝑥, 𝑦 ∈ 𝐺

⇐⇒
{
𝑥𝑦𝑥−1𝑦−1 | ∀𝑥, 𝑦 ∈ 𝐺

}
⊆ 𝐾𝑒𝑟𝜎

于是所有 𝑥𝑦𝑥−1𝑦−1 都必须包含进同态核里. 又由于同态核是一个群，于是
{
𝑥𝑦𝑥−1𝑦−1 | ∀𝑥, 𝑦 ∈ 𝐺

}
生成的群也要包含在同态核里.

Definition 1.11称 𝑥𝑦𝑥−1𝑦−1 是 x,y的换位子,所有换位子生成的群称作是换位子群，或 G的导群，
记作 𝐺 ′.即

𝐺 ′ =<
{
𝑥𝑦𝑥−1𝑦−1 | ∀𝑥, 𝑦 ∈ 𝐺

}
>

可以看出，一个群的导群越大，其越不可交换 (这与中心刚好相反).根据定义立刻有:

Corollary 1.3：
(1) G是交换群 ⇐⇒ 𝐺 ′ = {𝑒}.
(2)同态映射 𝜎 : 𝐺 → 𝐺，其同态像是交换群 � 𝐺 ′ ⊆ 𝐾𝑒𝑟𝜎.
(3) 𝐺 ′ ⊴ 𝐺.

Proof 我们只证明 (3) . ∀𝑔 ∈ 𝐺, 𝑧 ∈ 𝐺 ′, 𝑔𝑧𝑔−1𝑧 ∈ 𝐺 ′, 𝑔𝑧𝑔−1 ∈ 𝐺 ′.于是 𝐺 ′ 是正规子群. □

Proposition 1.1 𝑁 ⊴ 𝐺,则 𝐺/𝑁 是交换群 ⇐⇒ 𝐺 ′ ⊆ 𝑁 .

Proof 考虑自然同态 𝐺 → 𝐺/𝑁 ,则 𝑁 是此同态的核，又由于导群含于此核中，于是由上推论 (2)
即得. □

Remark 1.2特别的取正规子群 𝑁 = 𝐺 ′ ，则 𝐺/𝐺 ′ 是交换群，并且是 G中最大的交换商群.

下面介绍一种特殊的由导群导出的群.

Definition 1.12称 G是可解群，如果存在正整数 𝑘 ,使得 𝐺 (𝑘 ) = {𝑒} ..

这个名称来源于高于四次的一般代数方程根式不可解,我们有 𝑓 (𝑥) = 0在 F上根式可解当且
仅当 𝑓 (𝑥)在 F上的伽罗瓦群是可解群.于是我们现在需要先认识了解它.首先我们很容易看出，交
换群都是可解群，因为它们的导群都只有单位元.为了刻画可解群，我们需要找到它的充要条件.
首先我们思考必要条件：

G是可解群⇒有 G的递降子群序列

𝐺 = 𝐺0 ⊵ 𝐺1 ⊵ 𝐺2 ⊵ · · · ⊵ 𝐺𝑠 = {𝑒}

并且每一个 𝐺 𝑖−1/𝐺 𝑖 都是交换群.这是因为，我们可以取一个导群列
{
𝐺 (𝑖)},该导群列最终是单位

元，并且每一个都是上一个的正规子群，𝐺 (𝑖)/𝐺 (𝑖+1) 是交换群.接下来我们可以证明这个条件是充
分的，于是:
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Theorem 1.31 G是可解群 ⇐⇒ 有 G的递降子群序列

𝐺 = 𝐺0 ⊵ 𝐺1 ⊵ 𝐺2 ⊵ · · · ⊵ 𝐺𝑠 = {𝑒}

并且每一个 𝐺 𝑖/𝐺 𝑖+1 是交换群.

Proof 我们证明它的充分性，必要性在上面已经说明了.由于 𝐺0/𝐺1 是交换群，于是 𝐺 ′ ⊆ 𝐺1.又
由于 𝐺1/𝐺2 是交换群,进而 𝐺 (2) ⊆ (𝐺1)′ ⊆ 𝐺2.归纳的可以证明 𝐺𝑙 ⊆ 𝐺𝑙.于是 𝐺 (𝑠) ⊆ 𝐺𝑠 = {𝑒}.说
明 G是可解群. □

下面这些很容易可以验证

Theorem 1.32可解群的每一个子群和同态像都是可解群.

Corollary 1.4可解群的商群是可解的.因商群是自然同态的同态像.

下面这个定理“听上去很合理”.

Theorem 1.33 𝑁 ⊴ 𝐺,若 𝑁 和 𝐺/𝑁 都是可解群，则 𝐺 也是可解群.

Proof 考虑 𝐺 → 𝐺/𝑁 的自然满同态映射 𝜋.则很容易验证

𝜋(𝐺 ′) = (𝐺/𝑁)′

同理有
𝜋(𝐺 (2) = 𝜋((𝐺 ′)′) = (𝜋(𝐺)) (2)

进一步由归纳法可以说明
𝜋(𝐺 (𝑖) ) = (𝜋(𝐺)) (𝑖)

于是存在某一个 𝑘 , 𝜋(𝐺 (𝑘 ) = (𝜋(𝐺))𝑘 = 𝑁 .由商群的性质，得 𝐺 (𝑘 ) ⊆ 𝑁 .又由于 𝑁 是可解群，存在
𝑙. 𝐺 (𝑘+𝑙) ⊆ 𝑁 (𝑙) = {𝑒}.说明 G是可解群. □

Theorem 1.34非交换单群都是不可解群

Proof 由于是单群，于是导群只能是 G或者 e，由于 G非交换，说明导群只能是 G.这样的话 G的
任意阶导群仍然是 G，不可能是 e.于是 G不是可解群. □

Corollary 1.5非交换可解群不是单群.

这启示我们，若想找非交换单群，只能从不可解群中找.

Theorem 1.35奇数阶群都是可解群

此证明长达 255页.此定理进一步告诉我们若想找非交换单群，只能从偶数阶不可解群中找.
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1.4.2 递降子群刻画一般群结构

在前面我们用递降的子群刻画了可解群，当时我们要求每一个商群都是交换群. 现在我们推
广至任意群上.

Definition 1.13群 G的一个递降子群序列：

𝐺 = 𝐺0 ⊵ 𝐺1 ⊵ 𝐺2 ⊵ · · · ⊵ 𝐺𝑟 = {𝑒}

称作是 G的次正规子群列.其商群组

𝐺0/𝐺1, · · ·𝐺𝑟−1/𝐺𝑟

称作是因子群组，其中含非单位元的因子群个数称作组的长度.

注意：G的次正规子群列中，后一个是前一个的正规子群，但不代表是 G的正规子群.事实上，正
规子群的正规子群不一定是正规子群. 1.2.3.
我们应该指出每一个群都有次正规子群列，理由如下：若 G是单群，则

𝐺 = 𝐺0 ⊵ 𝐺1 = {𝑒}

若 G不是单群，我们可以在中间插入正规子群.若插入的正规子群不是单群，此过程还可继续下
次.若我们要求次正规子群列中无重复项，那么对于有限群而言，群列的长度一定小于 |𝐺 |.需要
提醒，一个群的次正规群列并不唯一.

Definition 1.14群 G的次正规子群列如果满足：每一个因子群都是单群，那么称是 G的一个合成
群列.

Example 1.7交错群 𝐴4 有三个合成群列：命 𝑉 = {(1), (12)(34), (13) (24), (14)(23)},则有

𝐴4 ⊵ 𝑉 ⊵ [(12)(34)] ⊵ {1}

𝐴4 ⊵ 𝑉 ⊵ [(13)(24)] ⊵ {1}

𝐴4 ⊵ 𝑉 ⊵ [(14)(23)] ⊵ {1}

那是否每一个有限群都有合成群列？答案是肯定的

Theorem 1.36每个有限群都有至少应该合成群列

Proof 设 G是有限群，则子群列长度不会超过 G的阶.不妨取 G的应该无重复项的最长的次正规
子群列，我们证明这就是一个合成序列.若不是合成序列，说明某一个 𝐺 𝑖/𝐺 𝑖+1不是单群，于是其
有非平凡正规子群 𝐻/𝐺 𝑖+1其中 H是 𝐺 𝑖 包含 𝐺 𝑖+1的非平凡正规子群.于是其可插入我们的次正规
子群列中，使得长度增加，这与最长矛盾.于是最长的次正规子群列一定是合成群列. □
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Corollary 1.6有限群是可解群当且仅当存在一个递降的子群列

𝐺 = 𝐺0 ⊵ 𝐺1 ⊵ 𝐺2 ⊵ · · · ⊵ 𝐺𝑟 = {𝑒}

其中的每一个因子群组都是有限可交换单群，因此是素数阶循环群.

在前面的 𝐴4 的三个合成群列中，我们还发现合成群列具有相同长度，这是由下面定理保证
的：

Theorem 1.37 (Jordan-Holder定理)有限群 G的任意两个无重复项的合成群列具有相同长度，并
且因子群组可以用某种方式配对，使得对应的因子群同构.

Proof 证明参考丘维声近世代数 P66. □

1.4.2.1 习题及解答

习题一： 𝑁 ≥ 5时，求 𝑆𝑛 的导群.
习题二：证明 𝑁 ≥ 5时，𝐴′

𝑛 = 𝐴𝑛

习题三：证明 𝑆𝑛, 𝑁 ≥ 5时都是不可解群.
习题四：证明 𝑁 ≥ 5时，𝐴𝑛 都是单群.

1.5 有限群的结构

1.5.1 群的直积

设 G和 H是两个群,运算都为乘法运算，在 𝐺 × 𝐻 上规定

(𝑔1, ℎ1)(𝑔2, ℎ2) := (𝑔1𝑔2, ℎ1ℎ2)

这是 (𝐺 ×𝐻,𝐺 ×𝐻到 𝐺 ×𝐻的映射.容易验证在此运算下 𝐺 ×𝐻是一个乘法群.称它是 𝐺和 𝐻上
的直积.

Remark 1.3对于有限多个群的直积，我们都可以这样定义，但无限多个时不行.为此我们需要范
畴论的知识，所以在这里暂时不讲.

自然的我们会想问 𝐺 是一个群，𝐻, 𝐾 是它的两个子群.什么时候有 𝐺 � 𝐻 × 𝐾 ?下面定理给
出了充要条件.

Theorem 1.38 𝐺 � 𝐻 × 𝐾 当且仅当下列三条成立.
(1) 𝐺 = 𝐻𝐾;
(2) 𝐻

⋂
𝐾 = {𝑒};

(3) 𝐻 中的每一个元素和 𝐾 都可交换;
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Proof 考虑映射

𝜎 : 𝐻 × 𝐾 → 𝐺

(ℎ, 𝑘) ↦→ ℎ𝑘.

𝜎是满射 ⇐⇒ 𝐺中每个元素𝑔能表示作𝑔 = ℎ𝑘, ℎ ∈ 𝐻, 𝑘 ∈ 𝐾

⇐⇒ 𝐺 = 𝐻𝐾

𝜎是单射 ⇐⇒ ℎ1𝑘1 = ℎ2𝑘2可推出ℎ1 = ℎ2, 𝑘1 = 𝑘2

⇐⇒ ℎ−1
2 ℎ1 = 𝑘2𝑘

−1
1 可推出ℎ1 = ℎ2, 𝑘1 = 𝑘2

⇐⇒ 𝐻
⋂

𝐾 = {𝑒}

𝜎[(ℎ1, 𝑘1)(ℎ2, 𝑘2) = 𝜎(ℎ1, 𝑘1)𝜎(ℎ2, 𝑘2),∀ℎ𝑖 ∈ 𝐻, 𝑘 𝑖 ∈ 𝐾

⇐⇒ H中每个元素与 K中每个元素可交换.

1.5.2 有限可换群的结构

Definition 1.15设 n是一个正整数.
(1)若 n可表示作

𝑛 = 𝑝𝛼1
1 · · · 𝑝𝛼𝑠

𝑠

其中 𝑝𝑖 是素数，不要求彼此互异，𝛼𝑖 ≥ 1,我们就称
{
𝑝𝛼1

1 , · · · , 𝑝
𝛼𝑠
𝑠

}
是 n的一个初等因子组.

(2)若 n可表示作
𝑛 = ℎ1 · · · ℎ𝑟

其中 ℎ𝑖 |ℎ𝑖+1，则称 {ℎ1, · · · , ℎ𝑟 }是 n的一个不变因子组.

Theorem 1.39 (初等因子定理)设 G是有限阿贝尔群，其阶数为 n，则 G可表示作

𝐺 � 𝐶𝑝
𝛼1
1
× · · · × 𝐶𝑝

𝛼1
𝑠

其中
{
𝑝𝛼1

1 , · · · , 𝑝
𝛼𝑠
𝑠

}
是 n的一个初等因子组. (该表示除乘积顺序外唯一.)

思路： G是有限群，于是 G可以由有限多个元素生成.如果 G有一个生成元集W，其中含有 r个
元素.若 G的任何 r-1个元素都不能生成W，则称W是极小生成元集.对于有限群一定有极小生成
元集，生成元集可以不同，但有一样的元素个数.于是在证明时候我们可以对生成元集的元素个数
作归纳法.此外，我们若能证明对有限可交换 p-群 P结论成立，那么根据定理1.38和 Sylow第一定
理，就可以知道对任意有限可交换群 G成立.
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Proof 我们着手证明此定理对有限可交换 p-群 P成立.对可交换 p-群 P的极小生成元集含有的元
素个数 n做归纳法.

n=1时，此 Abel p-群是循环群，结论成立.
设当 n=r-1时，命题成立，下面验证 n=r的情形.设 P是阶为 𝑝𝑙 的阿贝尔 p-群,它的极小生成

元集含有 r个元素.为了使用归纳假设，我们希望将 P分解作

𝑃 =< 𝑎 > ×𝑃1, 𝑎 ∈ 𝑃, 𝑃1 ≤ 𝑃

并且 𝑃1的极小生成元集含有 r-1个元素.若能找到这样的 𝑎和 𝑃1就由归纳假设就证完了，于是我
们去找这样的两个东西.自然的我们会想到要去 P的含 r个元素的极小生成元集中找.
回顾定理1.38,知道我们找的 𝑎和 𝑃1 应该满足：
(1) < 𝑎 >

⋂
𝑃1 = {𝑒};

(2) 𝑃 =< 𝑎 > × 𝑃1;
(3) < 𝑎 >和 𝑃1 中元素可以任意交换;
考虑M是这样的集合:

𝑀 =
{
( 𝑗1, · · · , 𝑗𝑟 ) | 𝑥 𝑗1

1 · · · 𝑥 𝑗𝑟
𝑟 = 𝑒, {𝑥1, · · · , 𝑥𝑟 }是 P的一个极小生成元集

}
𝑀 ′ 是这样的集合

𝑀 ′ = {𝑚𝑖𝑛 { 𝑗1, · · · , 𝑗𝑟 } | ( 𝑗1, · · · , 𝑗𝑟 ) ∈ 𝑀, 𝑗𝑖 > 0}

于是 𝑀 ′ 有最小正整数，记作 m.因而有 P的极小生成元集 {𝑥1, · · · , 𝑥𝑟 },使得

𝑥𝑚1 𝑥
𝑗2
2 · · · 𝑥 𝑗𝑟

𝑟 = 𝑒 (1)

我们断言 𝑚 | 𝑗𝑖, 2 ≤ 𝑖 ≤ 𝑟.否则,以 𝑖 = 2为例： 𝑗2 = 𝑞2𝑚 + 𝑢2, 0 ≤ 𝑢2 ≤ 𝑚

𝑒 = (𝑥1𝑥
𝑞2
2 )𝑚𝑥𝑢2

2 · · · 𝑥 𝑗𝑟
𝑟

由于
{
𝑥1𝑥

𝑞2
2 , 𝑥2, · · · , 𝑥𝑟

}
也是 P的一个极小生成元集，于是 (𝑚, 𝑢2, · · · , 𝑗𝑟 ) ∈ 𝑀, 𝑢2 ∈ 𝑀 ′,由于 𝑚是

𝑀 ′ 中最小的，于是 𝑢2 = 0.类似可证得 𝑚 | 𝑗𝑖, 2 ≤ 𝑖 ≤ 𝑟.
因此 (1)化作

(𝑥1𝑥
𝑞2
2 · · · 𝑥𝑞𝑟𝑟 )𝑚 = 𝑒

我们命 𝑎 = (𝑥1𝑥
𝑞2
2 · · · 𝑥𝑞𝑟𝑟 ), 𝑃1 = < 𝑥2, · · · , 𝑥𝑟 .

我们可以验证：
(1) < 𝑎 > 𝑃1 = 𝑃

(2) < 𝑎 >和 𝑃1 中元可任意交换
(3)若 < 𝑎 >

⋂
𝑃1 = 𝑦,则 ∃𝑠 < 𝑚 𝑎𝑠 = 𝑥𝑞2

2 · · · 𝑥𝑞𝑟𝑟 ,于是

𝑎𝑠𝑥−𝑞2
2 · · · 𝑥−𝑞𝑟𝑟
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导致 𝑠 ∈ 𝑀 ′,这与 m的选取有关，进而

< 𝑎 >
⋂

𝑃1 = {𝑒} .

从而 𝐺 =< 𝑎 > ×𝑃1.由归纳假设
𝑃1 � 𝐶𝑝𝛼2 × · · · × 𝐶𝑝𝛼𝑟

再
< 𝑎 >� 𝐶𝑝𝛼1

于是
𝐺 � 𝐶𝑝𝛼1 × · · · × 𝐶𝑝𝛼1 .

其中 𝛼1 + · · · + 𝛼𝑟 = 𝑙

于是我们对可交换 p-群证明了结论正确.再由于 G可以分解作 Sylow-p子群的乘积，Sylow-p
子群又可以分解，于是定理得证.

Theorem 1.40 (不变因子定理)设 G是有限阿贝尔群，其阶数为 n，则 G可表示作

𝐺 � 𝐶ℎ1 × · · · × 𝐶ℎ𝑟

其中 {ℎ1, · · · , ℎ𝑟 }是 n的一个不变因子组.

Theorem 1.41每一个有限阿贝尔群的初等因子组唯一，两个有限阿贝尔群同构当且仅当它们有一
样的初等因子组.

Proof 此证明有些复杂，具体参考丘维声近世代数 P93. □

1.6 群例

1.6.1 n元对称群

Definition 1.16 :
(1)给定一个集合Ω,其上全部自双射组成的集合记作 𝑆Ω, 𝑆Ω是一个群，称作Ω上的全变换群.
(2)特别的当 Ω基数有限时，称集合上的每一个自双射是一个置换，此时 𝑆Ω称作是 𝑛元对称

群，记作 𝑆𝑛.

一个 n元置换 𝜎把 𝑖 ↦→ 𝑎𝑖,记作

𝜎 =

(
1 2 · · · 𝑛
𝑎1 𝑎2 · · · 𝑎𝑛

)
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可以看出这样的置换一共有 𝑛!个,于是 |𝑆𝑛 | = 𝑛!.
𝑆𝑛 中任意两个置换相乘是按照映射的乘法进行的,以 𝑆4 中两个置换 𝜎, 𝜏为例.设

𝜎 =

(
1 2 3 4
2 3 4 1

)
, 𝜏 =

(
1 2 3 4
4 3 2 1

)
.

则

𝜎𝜏 =

©­­­­­­­­«

1 2 3 4
↓ ↓ ↓ ↓
4 3 2 1
↓ ↓ ↓ ↓
1 4 3 2

ª®®®®®®®®¬
=

(
1 2 3 4
1 4 3 2

)
,

𝜏𝜎 =

©­­­­­­­­«

1 2 3 4
↓ ↓ ↓ ↓
2 3 4 1
↓ ↓ ↓ ↓
3 2 1 4

ª®®®®®®®®¬
=

(
1 2 3 4
3 2 1 4

)
.

我们还可以用一种更节省的方式写出置换.例如, (4)式中的 𝜎,它把 1 ↦→ 2, 2 ↦→ 3, 3 ↦→ 4, 4 ↦→ 1,于
是可以把 𝜎写成下述形式:

𝜎 = (1 2 3 4)

类似地, (4)式中的 𝜏,它把 1 ↦→ 4, 4 ↦→ 1, 2 ↦→ 3, 3 ↦→ 2,于是可以把 𝜏写成下述形式: 𝜏 = (14)(23).
由此引出下述概念:
如果一个 𝑛元置换 𝜎 把 𝑖1 映成 𝑖2,把 𝑖2 映成 𝑖3, · · · · · · ,把 𝑖𝑟−1 映成 𝑖𝑟 ,把 𝑖𝑟 映成 𝑖1,并且 𝜎 保

持其余元素不变,那么称 𝜎 为一个 𝑟-轮换 (𝑟− cycle),简称为轮换,记做 (𝑖1𝑖2𝑖3 · · · 𝑖𝑟−1𝑖𝑟 ),也可以写
成 (𝑖2𝑖3 · · · 𝑖𝑟−1𝑖𝑟 𝑖1),还可以写成 (𝑖3𝑖4 · · · 𝑖𝑟−1𝑖𝑟 𝑖1𝑖2),等等.特别地, 2 -轮换也称为对换;恒等映射 𝐼 记
做 (1).两个轮换如果它们之间没有公共的元素,那么称它们不相交 (disjoint).
例如, 𝑆5 中, (134)与 (25)是不相交的两个轮换.乘积 (134) (25)把 1 ↦→ 3, 2 ↦→ 5, 3 ↦→ 4, 4 ↦→

1, 5 ↦→ 2,而乘积 (25) (134)也是把 1 ↦→ 3, 2 ↦→ 5, 3 ↦→ 4, 4 ↦→ 1, 5 ↦→ 2.因此, (134) (25) = (25)(134).
这种分析方法对于任意两个不相交的轮换都适用.因此我们得到:不相交的两个轮换对乘法是可交
换的.
从 (4)式中的 𝜎, 𝜏写成轮换形式的过程,容易猜想有下述结论:

Theorem 1.42 𝑆𝑛 中任一非单位元的置换都能表示成一些两两不相交的轮换的乘积,并且除了轮换
的排列次序外,表示法是唯一的.

Proof 设 𝜎 ∈ 𝑆𝑛,且 𝜎 ≠ (1).于是在 Ω = {1, 2, · · · , 𝑛}中至少有一个 𝑖1 使得 𝜎 (𝑖1) ≠ 𝑖1.设

𝜎 (𝑖1) = 𝑖2, 𝜎 (𝑖2) = 𝑖3, · · · .
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由于 |Ω| = 𝑛,因此在有限步后所得的像必与前面的元素重复.设 𝑖𝑟 是第一个与前面的元素重复的
元素,设 𝑖𝑟 = 𝑖 𝑗 , 𝑗 < 𝑟 .假如 𝑗 > 1,由于 𝜎 (𝑖𝑟−1) = 𝑖𝑟 , 𝜎

(
𝑖 𝑗−1

)
= 𝑖 𝑗 ,因此

𝜎𝑟−1 (𝑖1) = 𝑖𝑟 = 𝑖 𝑗 = 𝜎 𝑗−1 (𝑖1) .

在上式两边用 𝜎−1 作用得
𝜎𝑟−2 (𝑖1) = 𝜎 𝑗−2 (𝑖1) .

即 𝑖𝑟−1 = 𝑖 𝑗−1.这与 𝑖𝑟 的选择矛盾.因此 𝑗 = 1.从而 𝑖𝑟 = 𝑖1.于是得到一个轮换 𝜎1 = (𝑖1𝑖2 · · · 𝑖𝑟−1).在
Ω\ {𝑖1, 𝑖2, · · · , 𝑖𝑟−1}中重复上述步骤,便可得到 𝜎表示成两两不相交轮换乘积的式子:

𝜎 = 𝜎1𝜎2 · · ·𝜎𝑡 .

唯一性假设 𝜎还有一个表示成两两不相交轮换乘积的式子: 𝜎 = 𝜏1𝜏2 · · · 𝜏𝑠.任取在 𝜎下变动的元素
𝑎,则在 𝜎1, 𝜎2, · · · , 𝜎𝑡 中存在唯一的 𝜎𝑙,使得 𝜎𝑙 (𝑎) ≠ 𝑎.同理,在 𝜏1, 𝜏2, · · · , 𝜏𝑠 中存在唯一的 𝜏𝑘 ,使
得 𝜏𝑘 (𝑎) ≠ 𝑎.我们有

𝜎𝑚
𝑙 (𝑎) = 𝜎𝑚(𝑎) = 𝜏𝑚𝑘 (𝑎), 𝑚 = 0, 1, 2, · · · .

𝜎𝑙 = 𝜏𝑘 . 继续这样的讨论, 可得 𝑡 = 𝑠, 并且在适当排列 𝜏1, 𝜏2, · · · , 𝜏𝑠 的次序后, 有 𝜎𝑖 = 𝜏𝑖, 𝑖 =

1, 2, · · · , 𝑡.从而唯一性成立. □

现在对于前面 𝑆4 中的 𝜎, 𝜏,用它们的轮换分解式来做乘法:

𝜎𝜏 = (1234) (14) (23) = (1) (24) (3) = (24),

𝜏𝜎 = (14) (23) (1234) = (13) (2) (4) = (13).

像上两式那样,在运算的结果中常常把 1-轮换省略不写.
现在我们来思考一共轮换的逆元.对于 𝜎,容易求出它的逆元:

𝜎−1 =

(
1 2 3 4
4 1 2 3

)
= (1432).

与 𝜎的轮换表示式 𝜎 = (1234) 比较,猜测有如下结论:

(𝑖1𝑖2 · · · 𝑖𝑟−1𝑖𝑟 )−1 = (𝑖1𝑖𝑟 𝑖𝑟−1 · · · 𝑖2) .

证明如下：由于
(𝑖1𝑖2 · · · 𝑖𝑟−1𝑖𝑟 ) (𝑖1𝑖𝑟 𝑖𝑟−1 · · · 𝑖2) = (𝑖1) (𝑖2) · · · (𝑖𝑟−1) (𝑖𝑟 ) ,

(𝑖1𝑖𝑟 𝑖𝑟−1 · · · 𝑖2) (𝑖1𝑖2 · · · 𝑖𝑟−1𝑖𝑟 ) = (𝑖1) (𝑖2) · · · (𝑖𝑟−1) (𝑖𝑟 ) ,

因此
(𝑖1𝑖2 · · · 𝑖𝑟−1𝑖𝑟 )−1 = (𝑖1𝑖𝑟 𝑖𝑟−1 · · · 𝑖2) .

通过直接计算可知下式成立:
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(1234) = (14) (13) (12).

一般地,可以直接验证下式成立:

(𝑖1𝑖2𝑖3 · · · 𝑖𝑟−1𝑖𝑟 ) = (𝑖1𝑖𝑟 ) (𝑖1𝑖𝑟−1) · · · (𝑖1𝑖3) (𝑖1𝑖2) .

再结合定理1.42,以及 (1) = (12) (12),得

Corollary 1.7 𝑆𝑛 中每一个置换都可以表示成一些对换的乘积.

注意:把置换表示成对换的乘积,其表示方式不唯一,并且这些对换会相交.例如:

(134) = (14) (13),

(134) = (12) (34)(24)(12).

从上式看出,把 (134)表示成对换的乘积,对换的个数都是偶数.由此猜测有下述结论:

Proposition 1.2 𝑆𝑛 中一个置换表示成对换的乘积,其中对换的个数的奇偶性由这个置换本身决定,
与表示方式无关.

Proof 任取 𝜎 ∈ 𝑆𝑛,设

𝜎 =

(
1 2 · · · 𝑛
𝑎1 𝑎2 · · · 𝑎𝑛

)
.

则 𝜎把 𝑛元排列 12 · · · 𝑛变成 𝑛元排列 𝑎1𝑎2 · · · 𝑎𝑛.可以证明，把 𝑛元排列 12 · · · 𝑛变成 𝑎1𝑎2 · · · 𝑎𝑛
可以经过一系列对换实现,并且所做对换的次数与 𝑛元排列 𝑎1𝑎2 · · · 𝑎𝑛 有相同的奇偶性.因此 𝜎可
以表示成一些对换的乘积,其中对换的个数由 𝜎本身决定,与表示方式无关. □

由于上命题,我们引出下述概念:
如果一个置换可以分解做偶数个兑换的乘积，称作偶置换，否则称作奇置换.可以证明偶置换

全体构成偶置换群，称作 n元交错群,记作 𝐴𝑛.

1.6.2 习题及解答

习题一：证明
(1) 𝑆𝑛 = ⟨{(12), (23), · · · , (𝑛 − 1, 𝑛)}⟩.
(2) 𝑆𝑛 =< {(12), (12 · · · 𝑛)} >.



Chapter 2
群在集合上的作用以及其应用

2.1 群作用及 sylow定理

2.1.1 群作用

引言：在 Galois考虑方程根式可解的时候，其考虑导方程根的置换群到根集的作用，这个作
用保持了根之间关系式的不变性，于是我们引入群作用的概念.

Definition 2.1 G是一个群，Ω是一个非空集合，若映射

𝜎 : 𝐺 ×Ω → Ω

(𝑎, 𝑥) ↦→ 𝑥𝑎

满足

𝑥 (𝑎𝑏) = (𝑥𝑏)𝑎, ∀𝑎, 𝑏 ∈ 𝐺,∀𝑥 ∈ Ω;

𝑒(𝑥) = 𝑥, ∀𝑥 ∈ Ω;

那么称 G在 Ω上有一个作用.

我们怎么理解一个群作用呢?实际上，若 G在 Ω上有一个群作用，就意味着每一个 G中的元
𝑎 ∈ 𝐺都对应了Ω上的一个映射 𝜙𝑎.由于 𝜙𝑎𝜙𝑎−1 = 𝜙𝑒 = 1Ω,说明 𝜙𝑎是可逆的，进而是一个双射.于
是群中任意一个元素都对应了 Ω上的一个变换，这种群到变换群的对应就是我们所说的群作用.
事实上我们可以更进一步的证明：

Proposition 2.1设 G在集合 Ω上有一个作用，则存在一个同态映射 𝜙.

𝜙 : 𝐺 → 𝑆Ω

𝑎 ↦→ 𝜙𝑎

其中 𝜙𝑎 (𝑥) = 𝑥𝑎.即群 G中元素 𝑎作用在 𝑥 ∈ Ω下的像.

32
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在同态映射 𝜙下的核称作这个群作用的核，我们有

𝑎 ∈ 𝐺是这个作用的核 ⇐⇒ 𝑎 ∈ 𝐾𝑒𝑟𝜙

⇐⇒ 𝜙𝑎 = 1Ω

⇐⇒ 𝜙𝑎 (𝑥) = 𝑥, ∀𝑥 ∈ Ω

⇐⇒ 𝑥𝑎 = 𝑥, ∀𝑥 ∈ Ω

当 𝐾𝑒𝑟𝜙 = {𝑒}时，称这个作用是忠实的.此时同态 𝜙 : 𝐺 → 𝑆Ω 是单同态.我们可以把命题2.1反过
来.即：若群 G到 Ω的变换群 𝑆Ω有一个同态映射，则 G在 Ω上有一个作用.
下面介绍一些重要的群作用
1.

𝐺 × 𝐺 → 𝐺

(𝑎, 𝑥) ↦→ 𝑎𝑥

即群 G 在 G 上的作用，称作群 G 在 G 上的左平移. 由于 𝑎𝑥 = 𝑥, ∀𝑥 ∈ 𝐺 ⇐⇒ 𝑎 = 𝑒, 于是
𝐾𝑒𝑟𝜙 = {𝑒},说明左平移作用是忠实的.于是 𝜙 : 𝐺 → 𝑆𝐺 是单同态，𝐺 � 𝐼𝑚𝜙 ≤ 𝑆𝐺 .于是我们有下
定理

Theorem 2.1 (Cayley定理)任意一个群都同构于某一个变换群，任意有限群同构于某一个置换群.

2.

𝐺 × 𝐺 → 𝐺

(𝑎, 𝑥) ↦→ 𝑎𝑥𝑎−1

称作共轭作用，本质上此作用是 G到 G的自同构群的一个双射.
群 G在集合上的作用还可给出一个集合上的划分.我们定义

𝑥 ∼ 𝑦 ⇐⇒ ∃𝑎 ∈ 𝐺, 𝑥𝑎 = 𝑦 ∀𝑥, 𝑦 ∈ Ω

可以验证”∼”是等价关系.于是可以据此等价关系划分出等价类：

∀𝑥 ∈ Ω, 𝑥 = {𝑦 ∈ Ω|𝑦 ∼ 𝑥}

= {𝑥𝑎 |𝑎 ∈ 𝐺}

:= 𝐺 (𝑥)

我们把包含 𝑥 的等价类 𝐺 (𝑥) 称作是 𝑥 的 G-轨道. 𝑥 的 G-轨道就是 𝑥 在群 G的作用下能到达的所
有点的集合.容易看出两条轨道要么不相交要么相等.于是 Ω可以写作不交轨道的并.

Ω =
𝑘⋃
𝑖=1

𝐺 (𝑥𝑖)
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我们称 {𝑥𝑖}是 Ω的 G-轨道的完全代表系.
下面我们分析一条轨道的长度，也就是 𝑥在群 G作用下能到达的点的数量.
我们知道对于 ∀𝑎, 𝑏 ∈ 𝐺, 𝑥, 𝑦 ∈ Ω, 𝑥𝑎 = 𝑥𝑏 ⇐⇒ 𝑥𝑎𝑏

−1
= 𝑥.于是我们考虑这样的 G的子集

𝐺 𝑥 := {𝑔 ∈ 𝐺 |𝑥𝑔 = 𝑥}

可以验证这是一个 G的子群，称作点 𝑥 的稳定子群. 𝑥 的稳定子群中的元素作用在 𝑥 上保持 𝑥 不
变.那么很快我们就可以猜想有

|𝐺 (𝑥) | = [𝐺 : 𝐺 𝑥]

事实上这是正确的，这是由于

𝑥𝑎 ≠ 𝑥𝑏 ⇐⇒ 𝑎𝑏−1 ∉ 𝐺 𝑥

⇐⇒ 𝑎𝐺 𝑥 ≠ 𝑏𝐺 𝑥

因此不同的 𝑥𝑎 的个数应该和不同的 G在 𝐺 𝑥 下的陪集数一样多.于是我们证明了：

Theorem 2.2 (轨道-稳定子定理)设 G在集合 Ω上有一个作用，则对于 ∀𝑥 ∈ Ω

|𝐺 (𝑥) | = [𝐺 : 𝐺 𝑥]

Corollary 2.1对于有限群 G，若 G在集合 Ω上有一个作用，那么 ∀𝑥 ∈ Ω有

|𝐺 (𝑥) | =
|𝐺 |
|𝐺 𝑥 |

从而轨道长度都是 G的阶的因子.

Remark 2.1注意区分 𝐺 (𝑥)和 𝐺 𝑥 ,前者是 Ω的子集，表示 𝑥 ∈ Ω在群作用下能到达的元素的集合，
后者是 G的子集,表示 𝑥的稳定子群.

我们可以将此推论运用到共轭作用上，对共轭作用作 G-轨道划分就得到有限群的类方程:

|𝐺 | = |𝐶𝐺 | + Σ𝑠
𝑖=1 |𝐺 (𝑥𝑖) | = |𝐶𝐺 | + Σ𝑠

𝑖=1 [𝐺 : 𝐶𝐺 (𝑥)]

其中 𝐺 (𝑥) 是 𝑥的共轭类.
接下来我们考虑 Ω中 G-轨道数.

Definition 2.2若 G在 Ω上的作用只有一条轨道，即对于 ∀𝑥, 𝑦 ∈ Ω, ∃𝑔 ∈ 𝐺,使得 𝑦 = 𝑥𝑔.那么称 G
在 Ω上的作用是传递的.此时称 Ω是群 G的一个齐次空间.

现在考虑，若有限群 G 在有限集合 Ω 上的作用有 𝑟 条轨道，则有 Ω 的 G-轨道完全代表系
{𝑥1, · · · , 𝑥𝑟 },使得

Ω =
𝑟⋃
𝑖=1

𝐺 (𝑥𝑖)



2.1 群作用及 sylow定理 35

于是

|Ω| =
𝑟∑
𝑖=1

|𝐺 (𝑥𝑖) | =
𝑟∑
𝑖=1

|𝐺 |
|𝐺 𝑥𝑖 |

这启示我们，若 𝑥, 𝑦属于同一条轨道，则应有 |𝐺 𝑥 | = |𝐺 𝑦 |.我们来验证一下.

x和 y属于同一轨道 ⇐⇒ ∃𝑎 ∈ 𝐺, 𝑦 = 𝑥𝑎

∀𝑔 ∈ 𝐺 𝑦 , 𝑦
𝑔 = 𝑦 ⇒ 𝑥𝑎𝑔 = 𝑥𝑎

⇒ 𝑥𝑎𝑔𝑎
−1
= 𝑥

⇒ 𝑎𝑔𝑎−1 ∈ 𝐺 𝑥

⇒ 𝑎𝐺 𝑦𝑎
−1 ⊆ 𝐺 𝑥 .

类似的可以得到 𝑎−1𝐺 𝑥𝑎 ⊆ 𝐺 𝑦 ,说明 𝐺 𝑥 = 𝑎−1𝐺 𝑦𝑎.于是我们证明了

Proposition 2.2 G在 Ω上有一个作用，则同一条 G-轨道上的点，它们的稳定子群是共轭的，因此
这些稳定子群的阶数相同.

由此命题，𝐺 𝑥𝑖 中所有元素的稳定子群的阶的和就是

|𝐺 𝑥𝑖 | |𝐺 (𝑥𝑖) | = |𝐺 | (由轨道稳定子定理)

更近一步，所有 Ω中元素的稳定子群的阶的和就是∑
𝑥∈Ω

|𝐺 𝑥 | =
𝑟∑
𝑖=1

|𝐺 (𝑥𝑖) | |𝐺 𝑥𝑖 | = 𝑟 |𝐺 |

为了求 𝑟 ,我们需要有另一种方法求
∑

𝑥∈Ω |𝐺 𝑥 |.
考虑 𝐺 ×Ω的子集 𝑆 = {(𝑔, 𝑥) |𝑥𝑔 = 𝑥}.则

|𝑆 | =
∑
𝑥∈Ω

|𝐺 𝑥 | = 𝑟 |𝐺 |.

另一方面，给定 ∀𝑔 ∈ 𝐺,记 𝐹 (𝑔) := {𝑥 ∈ Ω|𝑥𝑔 = 𝑥},则

|𝑆 | =
∑
𝑔∈𝐺

|𝐹 (𝑔) |

从而

𝑟 |𝐺 | =
∑
𝑔∈𝐺

|𝐹 (𝑔) |

𝑟 =
1
|𝐺 |

∑
𝑔∈𝐺

|𝐹 (𝑔) |

这就是著名的 𝐵𝑢𝑟𝑠𝑖𝑑𝑒引理.
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Theorem 2.3 (Burside定理)对于有限群 G，有限集 Ω，Ω在 G的作用下有 𝑟 条轨道，则

𝑟 =
1
|𝐺 |

∑
𝑔∈𝐺

|𝐹 (𝑔) |.

我们接下来考虑群作用的一种情况，若 ∃𝑥 ∈ Ω, ∀𝑔 ∈ 𝐺, 𝑥𝑔 = 𝑥,我们称 𝑥 是群 G作用下的不
动点，以 Ω0 记所有不动点的全体.

Proposition 2.3 p-群 G在有限集 Ω上有作用，则

|Ω0 | ≡ |Ω| (𝑚𝑜𝑑 𝑝)

Proof

|Ω| = |Ω0 | +
𝑟∑
𝑖=1

|𝐺 (𝑥𝑖) |

由于 |𝐺 (𝑥𝑖) | =
|𝐺 |
|𝐺 𝑥𝑖 |

,于是每一个 |𝐺 (𝑥𝑖) |都被 𝑝整除，说明

|Ω| = |Ω0 | (𝑚𝑜𝑑 𝑝).

将此命题应用在群共轭作用上，我们可以得到 |𝐺 | ≡ |𝑍 (𝐺) | (𝑚𝑜𝑑 𝑝).这就是定理1.16.
关于传递作用，我们还有一个重要的定理：

Theorem 2.4 (Frattini论断)设 G作用在 Ω上，并且 G包含一个子群 N，子群在 Ω上的作用是传
递的，则

𝐺 = 𝐺𝛼𝑁 ∀𝛼 ∈ Ω

Proof ∀𝛼 ∈ Ω, ∀𝑔 ∈ 𝐺. 𝛼𝑔 = 𝛽.由于 N是传递的，于是存在 𝑛 ∈ 𝑁, 𝛼𝑛 = 𝛽, 𝛼𝑔𝑛−1
= 𝛼, 𝑔𝑛−1 ∈ 𝐺𝛼.

于是 𝑔 = 𝑔𝑛−1𝑛⇒ 𝐺 = 𝐺𝛼𝑁 . □

2.1.2 sylow定理

前言： 𝐿𝑎𝑟𝑎𝑛𝑔𝑒定理指出，有限群的任一子群的阶数一定是群阶数的因子，很自然的我们会
考虑这个定理的逆：群 G的阶数 |𝐺 |的因子 𝑑,是否一定有 𝑑阶的子群.对于循环群显然是成立的，
很遗憾的是对于一般群此定理不成立.我们有反例：

Example 2.1 |𝐴4 | = 4!,但 𝐴4 中只有 2阶，3阶和 22 阶子群，无 6阶子群.

这个例子让我们不禁猜想:若 𝑝是 |𝐺 |的素因子，是否一定有 𝑝𝑘 阶子群.
我们正式的提出问题: |𝐺 | = 𝑝𝑙𝑚, 𝑝是素数，(𝑚, 𝑝) = 1,对于 1 ≤ 𝑘 ≤ 𝑙,是否一定有 𝑝𝑘 阶子群?
思路：首先 G的 𝑝𝑘 阶子群一定是 G的 𝑝𝑘 阶子集.于是我们将所有 G的 𝑝𝑘 阶子集取出，命

名作集合 Ω.考虑 G在 Ω上的作用：
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∀𝑔 ∈ 𝐺, 𝐴 =
{
𝑎1, · · · , 𝑎𝑝𝑘

}
∈ Ω, 𝑔𝐴 :=

{
𝑔𝑎1, · · · , 𝑔𝑎𝑝𝑘

}
那么 𝐺𝐴 (A的稳定子群)就是一个 G的子群.由于 ∀𝑎 ∈ 𝐴, 𝐺𝐴𝑎 ⊆ 𝐴,于是

|𝐺𝐴 | = |𝐺𝐴𝑎 | ≤ |𝐴| = 𝑝𝑘

也就是说，现在我们只需要找到一个 𝐺𝐴,满足 |𝐺𝐴 | ≥ 𝑝𝑘 即可.或者更进一步，找到一个 𝐺𝐴,满足
𝑝𝑘 |𝐺𝐴也可以.
由于

|𝐺 | = |𝐺𝐴 | |𝐺 (𝐴) |

于是若 𝑝𝑘 | |𝐺𝐴 |,那么 𝑝𝑙−𝑘+1 ∤ |𝐺 (𝐴) |.于是我们去找一个 𝐺 (𝐴), 𝑝𝑙−𝑘+1 ∤ |𝐺 (𝐴) |.
我们想到

|Ω| =
𝑟∑
𝑖=1

|𝐺 (𝐴𝑖) |

于是若 𝑝𝑙−𝑘+1 ∤ |Ω|,那么我们就能找到一个 𝐴𝑖, 𝑝𝑙−𝑘+1 ∤ |𝐺 (𝐴𝑖) |.
事实上，

|Ω| = 𝐶 𝑝𝑘

𝑛 =
𝑛(𝑛 − 1) · · · (𝑛 − 𝑝𝑘 + 1)

𝑝𝑘 (𝑝𝑘 − 1) · · · (𝑝𝑘 − 𝑝𝑘 + 1)
我们比较每一个 𝑛 − 𝑗 和 𝑝𝑘 − 𝑗 ,命 𝑗 = 𝑝𝑡 𝑡′, (𝑝, 𝑡′) = 1,那么

𝑛 − 𝑗 = 𝑝𝑡 (𝑝𝑙−𝑡 − 𝑗 ′)

𝑝𝑘 − 𝑗 = 𝑝𝑡 (𝑝𝑘−𝑡 − 𝑗 ′

于是𝐶 𝑝𝑘

𝑛 中，至多只 𝑝的 𝑝𝑙−𝑠因子.说明 𝑝𝑙−𝑘+1 ∤ 𝐶 𝑝𝑘

𝑛 = |Ω|.于是根据前面的思考，存在一个𝐺 (𝐴𝑖),
𝑝𝑙−𝑘+1 ∤ |𝐺 (𝐴𝑖) |, 𝑝𝑘 | |𝐺𝐴𝑖

|, |𝐺𝐴𝑖
| = 𝑝𝑘 .我们就找到了要求的 𝑝𝑘 阶群.

这就是著名的

Theorem 2.5 (Sylow第一定理)设 G的阶 𝑛 = 𝑝𝑙𝑚,其中 𝑝是素数，(𝑚, 𝑝) = 1.则对于 1 ≤ 𝑘 ≤ 𝑙,在
G中比存在 𝑝𝑘 阶子群，其中 𝑝𝑙 阶子群我们称作 G的 Sylow p-子群.

现在我们知道，每一个 𝑝𝑙阶子群，其包含 𝑝𝑘 , 1 ≤ 𝑘 ≤ 𝑙阶子群，那么反过来，任意 𝑝𝑘 , 1 ≤ 𝑘 ≤ 𝑙
阶子群，是否一定含于某一个 𝑝𝑙 阶子群中呢？
首先给定一个 Sylow-p子群 𝑃,容易验证所有 𝑃的共轭子群都是 G的 Sylow-p子群.于是我们

只需说明，任意 𝑝𝑘 阶子群 H，一定含于 𝑃的某个共轭子群即可.

H含于 P的共轭子群中 ⇐⇒ ∃𝑎 ∈ 𝐺, 𝐻 ⊆ 𝑎𝑃𝑎−1

⇐⇒ ∃𝑎 ∈ 𝐺, 𝑎−1𝐻𝑎 ⊆ 𝑃

⇐⇒ ∃𝑎 ∈ 𝐺, ∀ℎ ∈ 𝐻, 𝑎−1ℎ𝑎 ∈ 𝑃

⇐⇒ ∃𝑎 ∈ 𝐺, ∀ℎ ∈ 𝐻, (ℎ𝑎)𝑃 = 𝑎𝑃
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于是我们考虑群 H在集合 𝐺/𝑃上的左平移作用

𝜙 : 𝐻 × (𝐺/𝑃) → (𝐺/𝑃)

(ℎ, 𝑔𝑃) ↦→ (ℎ𝑔)𝑃

为了证明前面 𝑎的存在性，我们只需说明在这个左平移作用下的不动点集不空就行.
由于 H是 p-群，由2.3

|Ω0 | ≡ |(𝐺/𝑃) | =
|𝐺 |
|𝑃 | = 𝑚 ≠ 0 (𝑚𝑜𝑑 𝑝)

于是不动点集非空，说明 ∃𝑎 ∈ 𝐺, 𝐻 ⊆ 𝑎−1𝑃𝑎,即含于某个 Sylow-p子群中.特别的取 𝑘 = 𝑙,我们得
到容易 Sylow-p子群都是共轭的.这就是：

Theorem 2.6 (Sylow第二定理)设 G的阶 𝑛 = 𝑝𝑙𝑚,其中 𝑝是素数，(𝑚, 𝑝) = 1.则对于 1 ≤ 𝑘 ≤ 𝑙,任
意 𝑝𝑘 阶子群，其一定含于某一个 Sylow p-子群中.特别的，两个 Sylow p-子群是共轭的.

Corollary 2.2有限群 G的 Sylow p-子群是正规子群当且仅当 G中只有一个 Sylow p-子群.

Proof 取 G的一个 Sylow p-子群 𝑃.由于 ∀𝑎 ∈ 𝐺, 𝑎−1𝑃𝑎 也是一个 Sylow p-子群，故 𝑎−1𝑃𝑎 = 𝑃 ⇒
𝑎𝑃 = 𝑃𝑎,故 𝑃是正规子群.必要性同理. □

自然的我们就会去思考，如何求一个 Sylow p-子群的个数？
命 Ω = {𝑃1, · · · , 𝑃𝑟 } 是所有 Sylow p-子群的集合.由命题2.3,我们可以考虑 p-群的群作用.最

自然的就是考虑 𝑃1 (Remark:这是任意一个 Sylow p-子群).规定群作用

𝜙 : 𝑃1 ×Ω → Ω

(𝑎, 𝑃𝑖) ↦→ 𝑎−1𝑃𝑖𝑎

我们研究此作用的不动点:

𝑄 ∈ Ω0 ⇐⇒ 𝑎−1𝑄𝑎 = 𝑄, ∀𝑎 ∈ 𝑃1

⇐⇒ 𝑎 ∈ 𝑁𝐺 (𝑄), ∀𝑎 ∈ 𝑃1

⇐⇒ 𝑃1 ⊆ 𝑁𝐺 (𝑄)

显然 𝑃1, 𝑄都是 𝑁𝐺 (𝑄)的 Sylow-p子群,并且 𝑄 ⊴ 𝑁𝐺 (𝑄),于是由上推论知, 𝑃1 = 𝑄.故

Ω0 = {𝑃1}

于是由命题2.3
𝑟 = |Ω| ≡ 1 (𝑚𝑜𝑑 𝑝).

此外 𝑃1 在 G中共轭子群的个数 𝑟 = [𝐺 : 𝑁𝐺 (𝑃1)] | |𝐺 | = 𝑝𝑙𝑚,于是 𝑟 |𝑚.综上我们证明了:

Theorem 2.7 (Sylow第三定理) G中 Sylow p-子群的个数 𝑟,满足

𝑟 ≡ 1 (𝑚𝑜𝑑 𝑝)

|𝐺 | = 𝑝𝑙𝑚, (𝑚, 𝑝) = 1,则 𝑟 |𝑚.
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2.1.3 习题及解答

习题一: G在 Ω上的作用是传递的，𝑁 ⊴ 𝐺,证明 N在 Ω上的轨道一样长.

Proof 任取 N在 Ω上的两条轨道

𝑁 (𝑥) = {𝑥𝑛 |𝑛 ∈ 𝑁}

𝑁 (𝑦) = {𝑦𝑛 |𝑛 ∈ 𝑁}

由于 G是传递的，于是存在 𝑔 ∈ 𝐺, 𝑥𝑔 = 𝑦.又由于 N是正规的，于是 𝑔𝑁𝑔−1 = 𝑁 .从而

𝑁 (𝑥) =
{
𝑥𝑔𝑛𝑔

−1 |𝑔𝑛𝑔−1 ∈ 𝑁
}

=
{
𝑥𝑔𝑛𝑔

−1 |𝑛 ∈ 𝑁
}

=
{
𝑦𝑛𝑔

−1 |𝑛 ∈ 𝑁
}

作映射

𝜎 : 𝑁 (𝑥) → 𝑁 (𝑦)

𝑦𝑛𝑔
−1 ↦→ 𝑦𝑛

容易验证这是一个双射，于是两个轨道一样长. □

习题二：有限群 G忠实的作用在 Ω上，A是 G的交换子群,且在 Ω上传递.证明 𝐶𝐺 (𝐴) = 𝐴.

Proof 由于 A是交换的，于是 𝐴 ⊆ 𝐶𝐺 (𝐴).下证反包含关系.
若 𝑏 ∈ 𝐶𝐺 (𝐴),由 Frattin论断2.4,

∀𝛼 ∈ Ω, ∃𝑔0 ∈ 𝐺𝛼, 𝑎0 ∈ 𝐴, 𝑏 = 𝑔0𝑎0

由于 A是传递的，于是 ∀𝛽 ∈ Ω, ∃𝑎 ∈ 𝐴,使得 𝛽 = 𝛼𝑎.此时

𝛼𝑎𝑏 = 𝛽𝑏 ⇒ 𝛼𝑏𝑎 = 𝛽𝑏

⇒ 𝛼𝑔0𝑎0𝑎 = 𝛽𝑏

⇒ 𝛼𝑎0𝑎 = 𝛽𝑏

⇒ 𝛽𝑎0 = 𝛽𝑏

⇒ 𝑏𝑎−1
0 ∈ 𝐾𝑒𝑟𝜙

⇒ 𝑏 = 𝑎0 ∈ 𝐴

于是反包含关系得证. □

习题三：证明 77阶群一定是循环群.
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Proof 由 Sylow第一定理，𝐺 中一定有阶数为 7的子群和阶数为 11的子群.设

𝑟7 :=阶数为 7的子群数

𝑟11 :=阶数为 11的子群数

则由 Sylow第三定理

𝑟7 ≡ 1 (𝑚𝑜𝑑 7)

𝑟7 | 11

于是 𝑟7 = 1.同理可得 𝑟11 = 1.进而 𝐺 中的 7阶元只有 6个，11阶元只有 10个，1阶元 1个.但

10 + 1 + 7 < 77

而 𝐺 中的非单位只能取阶数 7, 11, 77,从而一定有 77阶元，进而 𝐺 是循环群. □

2.2 Sylow定理在可解群、P-群上的应用

Recall 1:一个群称作 p-群，若其所有元素的阶都是 p的方幂.若 G是有限群，则这等价于 G
的阶数是 p的方幂.

Recall 2:我们用 𝑁 < 𝐺 表示 N是 G的真子群，用 𝑁 ⊂ 𝐺 表示 N是 G的真子集.
Recall 3:一个群的子群 H，与 H共轭的子群一共有 [𝐺 : 𝑁𝐺 (𝐻)] 个.
下面我们来研究 p-群的可解性.我们想说明，有限 p-群都是可解群.

Theorem 2.8有限 p-群都是可解群.

Proof 设 |𝐺 | = 𝑝𝑙,我们对 𝑙 作归纳.当 𝑙 = 0时，结论显然成立.假设当 𝑙 < 𝑛 时结论成立，考虑
𝑙 = 𝑛时.若我们能在 G中取出一个正规 𝑝𝑙−1 阶群 𝑃′，那么由归纳假设知 𝑃′ 和 𝐺/𝑃′ 都是可解群，
于是 G也是可解群.由于所求 𝑃′ 的存在性可由下引理保证.于是 p-群都是可解群. □

Lemma 2.1 G是有限群，P是 G的 p-子群，但不是 Sylow p-子群，则 𝑃 ⊂ 𝑁𝐺 (𝑃).进一步，若 P是

G的极大子群，则 P是正规子群，并且 |𝑃 | =
|𝐺 |
𝑝

.

Proof 对 G作双陪集分解

𝐺 =
𝑘⋃
𝑖=1

𝑃𝑥𝑖𝑃

每一个双陪集，又可以分解作 𝑛𝑖 = [𝑃 : 𝑃𝑥𝑖
⋂
𝑃] =

|𝑃 |
|𝑃𝑥𝑖

⋂
𝑃 | = 𝑝𝑠 个 P的右陪集的并.于是，G可

以分解作 𝑛1 + · · · + 𝑛𝑘 = [𝐺 : 𝑃] 个右陪集的并.由于 𝑝 | [𝐺 : 𝑃],并且有一个 𝑃𝑥𝑖𝑃 = 𝑃, 𝑛𝑖 = 1,于是
还有至少一个 𝑛 𝑗 = 1.说明存在 𝑥 𝑗
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𝑃𝑥 𝑗

⋂
𝑃 = 𝑃, 𝑃𝑥 𝑗 = 𝑃

于是 𝑥 𝑗 ∈ 𝑁𝐺 (𝑃), 𝑥 𝑗 ∉ 𝑃,从而 𝑃 ⊂ 𝑁𝐺 (𝑃).
由于 𝑃 < 𝑁𝐺 (𝑃),由 P的极大性，𝐺 = 𝑁𝐺 (𝑃)，说明其是正规子群. □

Remark 2.2于是对于一个 𝑝𝑙 阶的 p-群 G，其任意 𝑝𝑙−1阶子群是极大子群，进而是正规子群.这就
补完了上定理的证明.

Theorem 2.9 pq阶群 G是可解群.其中 p,q是素数.

Proof 不妨设 𝑝 < 𝑞,则由 Sylow第一定理指导其有 Sylow q-子群 Q. Q是可解群，于是若我们能说
明 Q是正规子群即可.对 G作 Q的共轭分解，假设 Q有 𝑛𝑞 个共轭类.由 Sylow第三定理

𝑛𝑞 ≡ 1 (𝑚𝑜𝑑 𝑞), 𝑛𝑞 =
|𝐺 |

|𝑁𝐺 (𝑄) |
≤

|𝐺 |
|𝑄 | ≤ 𝑝

于是 𝑛𝑞 = 1，由 Sylow第二定理知 Q是正规子群，于是 𝐺/𝑄是商群 |𝐺/𝑄 | = 𝑝是可解群，从而 G
是可解群. □

更进一步我们有

Theorem 2.10 𝑝𝛼𝑞阶群 G是可解群，其中 𝑝, 𝑞是素数，𝛼是正整数.

Proof 设 P是 G的 Sylow p-子群，若 P是 G的正规子群，则定理得证.否则考虑 P的所有共轭子
群，即所有 Sylow p-子群:

𝑝1, · · · , 𝑝𝑛𝑝
.

我们有 𝑛𝑝 =
|𝐺 |

|𝑁𝐺 (𝑃1 |
= 𝑞于是可以改写所有正规子群作:

𝑃1, · · · , 𝑃𝑞

下面分情况考虑
(i)若对于 𝑖 ≠ 𝑗 , 𝑃𝑖

⋂
𝑃 𝑗 = {𝑒}.此时⋃𝑞

𝑖=1 𝑃𝑖 包含 (𝑝𝛼 − 1)𝑞 + 1个元素.此时还剩下 𝑞 − 1个元
素为包含进去.由于 G中还有一个 q阶子群，q子群和 p子群是不交的，于是这样的 q子群只有一
个，于是此 q子群是正规的，那么由 q子群可解，q子群的商群可解，知 G可解.

(ii) 若有 𝑃𝑖

⋂
𝑃 𝑗 > 1. 选取 𝑖 ≠ 𝑗 , 使得 |𝑃𝑖

⋂
𝑃 𝑗 | 最大. 令 𝑃𝑖

⋂
𝑃 𝑗 = 𝐷. 由于 𝐷 < 𝑃𝑖, 于是

𝐷 < 𝑁𝑃𝑖
(𝐷) = 𝐻𝑖 ≤ 𝑃𝑖 由于 𝐷 < 𝑃 𝑗 ,于是 𝐷 < 𝑁𝑃𝑗

(𝐷) = 𝐻 𝑗 ≤ 𝑃 𝑗 .这时有 𝐻 ⊴< 𝐻𝑖, 𝐻 𝑗 >= 𝑇 .
1)若T是 p-子群，则存在G的 Sylow p-子群 𝑃𝑘使得𝑇 ≤ 𝑃𝑘 ,此时 𝑃𝑘

⋂
𝑃𝑖 ≥ 𝐻𝑖 > 𝐷 ⇒ 𝑃𝑘 = 𝑃𝑖,

同理 𝑃𝑘 = 𝑃 𝑗 ⇒ 𝑃𝑖 = 𝑃 𝑗 ,矛盾,于是只能是情况 2).
2) |𝑇 | = 𝑝𝑡𝑞.令 Q是 T的 q阶子群.可以证明 𝐺 = 𝑄𝑃𝑖,令 𝑁 = 𝐷𝐺 ,则 𝑁 ⊴ 𝐺, N是 G的真子

群，就证完了. □

这个定理还可推广作
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Theorem 2.11 (Burnside) 𝑝, 𝑞是素数，𝑎, 𝑏是正整数，则 𝑝𝑎𝑞𝑏 阶群必为可解群.

在这里我们略去证明，以后学了表示论再证.

Theorem 2.12 (Feit-Thompson)奇数阶群必为可解群

此定理证明长达 150页，一般避免使用此定理.
借助上定理，我们可以证明

Theorem 2.13 |𝐺 | = 2𝑛,其中 n是奇数，则 G是可解群
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Chapter 3
图的基本概念

3.1 图的基本定义

3.1.1 图的一些基本定义

Definition 3.1：
(1) complement：一个图的补图是有顶点集𝑉 (𝐺)，两个顶点相邻当且仅当在 G中不相邻得到

的图;
(2) clique：是 G的一个完全子图;
(3) independent set：是一个 𝑉 (𝐺) 的子集，其中的顶点两两不相邻;
(4) self-complementary：G称作是自补的，如果它同构于它的补图;
(5) decomposition：一个图的分解指的是其一列子图，每条 G的边恰只在其中一个子图中出

现;
(6) H-free:G称作是 H-free指的是其没有 induce subgraph同构于 H.

3.1.2 子图

Definition 3.2：
(1)称 Y是 X的子图,当且仅当 V(Y)⊆V(X), E(Y)⊆E(X);
(2)若其中 V(Y)=V(X),则称 Y是 X的生成子图或支撑子图 (spanning subgraph);
(3)若 V(Y)的两个顶点相邻当且仅当它们在图 X中相邻,则 Y是 X的诱导子图 (induce sub-

graph);

有时候顶点集的元素不一样,但若一个图同构于另一个图的子图,我们任然可以说这个图是另一个
图的子图.从定义我们可以看出,我们可以通过删除图 G的某一些边,从而获得一个支撑子图.若删

45



46 3 图的基本概念

掉的边是 𝑒,此支撑子图可以用 𝐺 − 𝑒来表示.可以通过删除一些点以及同该点关联的边,来获得一
个诱导子图.设删掉的顶点集是 𝑆,则此诱导子图用 𝐺 − 𝑆来表示.

3.1.3 Graph library

本节旨在列举一些常见的图的名称,以便查询。
1: trangle本质上是 𝐾3.

trangle

2: claw本质上是 1,3-完全图 𝐾1,3

claw

3: kite本质上是 𝐾4 − 𝑒

kite

3.2 顶点度

该节重新叙述一遍顶点度这个概念,旨在介绍一些重要的记号和定义.

Definition 3.3：
(1) 𝑑𝐺 (𝑣) 表示 v在图 G中边的数量,称作顶点 v的度 (degree).
(2) △(𝐺)表示 G的最大顶点度, 𝛿(𝐺) 表示 G的最小顶点度.
(3)若 △(𝐺) = 𝛿(𝐺) = 𝑘 ,则称 G是 k-正则的.
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(4) e(G)表示 G中边的数量.

Theorem 3.1：
(1)给定一个图 G,我们有 ∑

𝑣∈𝑉 (𝐺)
𝑑 (𝑣) = 2𝑒(𝐺).

(2)一个有 n个顶点的 k-正则图有 nk/2条边.

Definition 3.4 (n维超立方体 (n-dimensional cube or hypercube) 𝑄𝑛)：
𝑄𝑛 是一个这样的图，它的顶点集

𝑉 (𝑄𝑛) = {𝑥1 · · · 𝑥𝑛 : 𝑥𝑖 = 0 𝑜𝑟 1}

任意 x, y属于 V(G),二者相邻当且仅当
∑𝑛

𝑖=1 |𝑥𝑖 − 𝑦𝑖 | = 1

由定义知 𝑄𝑛 有 2𝑛 个顶点.我们可以对 V(G)作二部划分：

𝑋 = {𝑥1 · · · 𝑥𝑛 : 𝑥1 + · · · + 𝑥𝑛 ≡ 0(𝑚𝑜𝑑2)}

𝑌 = {𝑥1 · · · 𝑥𝑛 : 𝑥1 + · · · + 𝑥𝑛 ≡ 1(𝑚𝑜𝑑2)}

显然任意两个 X中的顶点无边,任意两个 Y中的顶点也无边.于是 Q以 X和 Y作为二部划分,是
一个二部图.另一方面,任意 X中的顶点,容易看出在 Y中有 n个顶点和它相邻,从而 Q是 n-正则
的二部图.

Theorem 3.2若 k>0,则一个 k-正则二部图一定是等二部图.

Proof 给定 G的一个二部划分 X和 Y,容易得到 e(G)=k|X|=k|Y|,于是 |X|=|Y|. □

结合该定理,最终我们得到,一个 n维超立方体是一个 k—正则的等二部图.

3.3 walk, trail, path, circuit, cycle

Definition 3.5：
(1) uv-walk：是指一个顶点和边交错出现的序列

𝑊 = (𝑢 =)𝑥𝑖0𝑒𝑖0𝑥𝑖1𝑒𝑖1 · · · 𝑒𝑖𝑘𝑥𝑖𝑘 (= 𝑣)

其中与边 𝑒𝑖 𝑗 相邻的两个顶点恰好是此边的两个端点,边的数量称作 walk的长度,下同.
(2) uv-trail(迹)：不含重复边的 uv-walk.
(3) uv-path:不含重复点的 uv-trail.
(4) circuit:起点终点相同的 trail.
(5) cycle:起点终点相同的 path.
(6) maximal path:一个不被包含在任何比他更长的路中的路.
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在上面的定义中, walk之所以需要强调走哪条边是因为在非简单图里可能有重边,但若在简单
图中,只需点的序列便可以唯一的决定一个 walk. walk,trail,path的起点和终点相同时，称是闭的.
我们知道 uv-walk并上 vs-walk是一个 us-walk,但 uv-path并上 vs-path并不一定是一个 us-path,

因为其中可能有重复的点.但有了这个定理,我们可以保证二者的并中至少包含一个 us-path.并以
此来说明顶点的连通关系是一个等价关系,这将在连通性一节出现.

Theorem 3.3每一个 uv-walk一定包含一个 uv-path

Proof 对 uv-walk=W的长度 l作数学归纳法.当 l=0时是显然的.
假设小于 l时结论成立.若W中无重复出现的点,则其已经是一个 uv-path.否则设 x是其中重

复出现的点,则在W的序列中删去两个 x之间的所有点和边 (以及一个重复的 u).据此得到一个长
度小于 l 的含于 W 的 uv-walk=Q, 由归纳法 Q 中包含一个 uv-path, 则该 uv-path 也含于 W 中, 证
毕. □

Theorem 3.4设 G是简单图, 𝛿是 G的最小顶点度,则 G中含长至少为 𝛿的路.

Proof 令 P=(𝑥0, 𝑥1 · · · 𝑥𝑘) 是 G 中的最长的路, 则由 P 的最长性, P 一定包含 𝑥0 的所有邻居, 于是
𝐿 (𝑃) = 𝑘 ≥ |𝑁𝑥0 | ≥ 𝛿 □

Theorem 3.5每一个奇数长的闭 walk,一定包含一个奇数长的 cycle.

Proof 仍然对 walk的长度 l作归纳.当 l=1时,是一个 loop.
假设小于 l时结论成立.仍然,若 W中无重复出现的点,则已经是一个奇数长的 cycle.否则设

x是其中重复出现的点,则可以将W分解作两个 x, x-walk,其中一个是奇数长,一个是偶数长.由归
纳法即得. □

值得说明的是偶数长的 walk没有此结论,因为他可能只是简单的重复走一遍就能得到偶数长
的 walk.上面的定理可以帮我们刻画二部图.我们有；一个图是二部图当且仅当它没有奇圈.在证
明过程中我们需要用到上定理.

Theorem 3.6若 G的最小顶点度大于等于 2,则 G中一定包含一个 cycle.

Proof 设 P是 G中最长的 path, u是 P的一个 endpoint.则 u的邻居数大于等于 2,设其有两个邻居
x, y.由 P的最长性, x, y一定都在 P中出现,不妨设三者按照 x, y, u的先后顺序出现.则 P中一定不
包含边 xu=e.于是 P+e组成 G中的一个 cycle. □
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此定理可以用于证明图是欧拉图的一个充要条件：G是欧拉图当且仅当他之多只有一个非平
凡连通分支,并且其每个顶点度都是偶数.
运用类似的方法,可以证明得到下面定理.

Theorem 3.7若 G的最小顶点度大于等于 k大于等于 2,则 G中包含一个长至少是 k+1的 cycle.

Theorem 3.8在偶图中,每一个极大的 trail都是闭的,即都是 circuit.

Proof 设 T是 G中的一个极大迹, v是 T中异于起点的点,则从起点到 v只用了奇数条以 v为端点
的边,由于 d(v)是偶的,于是 T可以继续延长,因此 T不以 v作为终点,于是只能以起点为终点. □

3.4 连通,连通分支,割点,割边,块

Definition 3.6：
(1)对于顶点 x、y,若存在一条 xy-path,则称 x和 y两点是连通的.
(2)连通是 G中的等价关系.
(3)连通关系将 V(G)分作数个等价系,每个等价系诱导的 G的子图称作 G的连通分支. (4)若

G只有一个连通分支,则称 G是连通图.
(5)若连通分支中无边,则称作 trivial的连通分支,此时当且仅当其中只有一个顶点,当且仅当

它是 G的孤立点 (isolated vertex).
(6)对于有向图,若 x到 y有一个 path, y到 x也有一个 path,则称 xy是强连通的.

Theorem 3.9 G有 n个顶点 k条边,则 G至少有 n-k个连通分支.

Proof 对 k作归纳法.当 k=0时,结论显然成立.由于每多一条边最多减少一个连通分支,于是由归
纳法即可得证. □

据此我们有推论

Theorem 3.10 n阶图 G是连通的,则 G至少包含 n-1条边.

根据最小顶点度也可以判断一个图是否连通

Theorem 3.11 n阶简单图 G,若 G的最小顶点度 𝛿(𝐺) ≥ (𝑛 − 1)/2,则 G一定是连通图.

Proof 任意两个顶点 u, v.若 u, v无共同的邻居,则 |𝑁 (𝑢)⋃ 𝑁 (𝑣) | ≥ 𝑛,矛盾.于是 u, v有一个共同
邻居,从而有一条 u, v-path. □

前面提到,减少一条边或点最多增加一个连通分支,于是我们希望对那些能增加连通分支的边
和点进行刻画.于是我们有定义.
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Definition 3.7 :
(1)对于 𝑣 ∈ 𝑉 (𝐺), 𝑒 ∈ 𝐸 (𝐺),若 G-v的连通分支数增加了,称 v是 G的割点,否则称作连通点.

若 G-e的连通分支增加了,称 e是 G的割边,否则称作连通边.
(2)无割点的连通图称作块 (block).

Theorem 3.12非平凡连通图至少有两个连通点

Proof 记 P=𝑥0𝑥1 · · · 𝑥𝑘 是 G中的最长的非圈路,可以断定两个端点都是连通点.若 𝑥0 是割点,则 G-
𝑥0 有两个连通分支.分别设做 𝐺1, 𝐺2,不妨设 𝑥1 ∈ 𝑉 (𝐺1),任取 𝑦 ∈ 𝑁𝐺 (𝑥0)

⋂
𝑉𝐺0 .由于 y和 𝑥1 在无

𝑥0时是不连通的,于是 y不在 P中.从而 e=y𝑥0不在 P中, P+e是比 P更长的 path,矛盾.于是 P的两
个端点都是连通点. □

下面一个定理给出了一条边是割边的充要条件.

Theorem 3.13一条边是割边当且仅当这条边不在某个 cycle中.

Proof 取 H是包含 e的连通分支. e不是割边等价于 H-e是连通的.于是原问题等价于证明 H-e是
连通的当且仅当 e属于某个 H的 cycle中.
若 e在某个 cycle C中.任取 H的顶点 x、y.由于 H是连通的,于是有一个 xy-path.若 P不包含

e,则已是 H-e的一条 xy-path.若 P包含 e,则将 e替换作 C-e,得到一条不含 e的 xy-walk,其中一定
包含一条 xy-path不含 e.说明 H-e是连通的.

另一方面,若 H-e是连通的,很容易可以取到一个 H中的 cycle包含 e,此处不证. □

3.5 二部图

Definition 3.8：
(1)若无环图的顶点集可以划分作两个非空子集 X和 Y,使得 X中的任何两个顶点无边相连,

Y中的任何两个顶点也无边相连.则称该图是一个二部图, X, Y称作 G的二部划分.
(2)若 X和 Y顶点数相同,则 G称为等二部图.
(3)一个等二部图若每个顶点都关联 k条边,称作 k-正则等二部图.
(4)若 X中的任意一个元素都和 Y中的任意一个元素有边,称作完全二部图.

下面给出一个图是二部图的等价条件,证明过程用到定理 3.5.

Theorem 3.14一个图是二部图当且仅当它没有奇圈.

Proof 首先设 G是一个二部图, X和 Y是它的二部划分.任意一个从集合 X里的顶点出发的 cycle,
若要走到 X一定走过了偶数条边,于是 cycle是偶的.
若 G是一个无奇圈的图,我们来构建 G的二部划分.任取 G的一个非平凡连通分支 H,和 H的

一个顶点 u.对于任意 H的顶点 v,定义函数 f(v)是最小的 uv-path的长度.命
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𝑋 =
{
𝑣 ∈ 𝑉 (𝐻) | 𝑓 (𝑣)是偶数

}
𝑌 =

{
𝑣 ∈ 𝑉 (𝐻) | 𝑓 (𝑣)是奇数

}
我们证明这样得到的X和Y是H的二部划分.任取 𝑣1, 𝑣2 ∈ 𝑉 (𝑋),若二者有边相连,则 𝑢𝑣1, 𝑣1𝑣2, 𝑣2𝑢

是 H中的一个奇数长 walk,由前面定理 3.5知包含奇数长的 cycle,从而矛盾.
于是对于 G的每一个非平凡连通分支 H,我们得到了 H的二部划分.将每个连通分支的 X并

起来, Y并起来,孤立点全部放到 X中,我们得到了 G的二部划分. □

上面定理同时还给了一个作二部图二部划分的方法, 就是对于每一个连通分支我们先取二部
划分. 有些时候, 一个完全图 𝐾𝑛 可以分解作数个二部图的并, 下面定理给出可如此分解的充要条
件.

Theorem 3.15 𝐾𝑛 可以分解作 k个二部图的并,当且仅当 𝑛 ≤ 2𝑘

Proof k=1时, 𝑘𝑛 能表示作一个二部图,当且仅当其本身是二部图当且仅当 𝑛 ≤ 2
假设小于 k时结论成立.若 𝐾𝑛 可以分解作 k个二部图的并,记 𝑘𝑛 = 𝐺1

⋃ · · ·⋃𝐺𝑘 ,其中每一
个 𝐺 𝐼 都是二部图.我们将 𝑉(𝐾𝑛) 分作 X和 Y,其中 𝐺𝑘 在 X中无边,在 Y中也无边.则剩下的 k-1
个 𝐺 𝑖 的并一定包含 X生成的完全图和 Y生成的完全图.于是由归纳假设, |𝑋 | ≤ 2𝑘−1, |𝑌 | ≤ 2𝑘−1.
从而 𝑛 = |𝑋 | + |𝑌 | ≤ 2𝑘 .
反之若 𝑛 ≤ 2𝑘 ,则将顶点集分作 X和 Y两部分,其中每一部分的数量都小于 2𝑘−1.由归纳假设

可以将它们分解做 k-1个二部图的并.我们将 X的第 i个分解同 Y的第 i个分解合并,得到 k-1个
G的二部子图.将把 X和 Y生成的完全二部图作为第 k个,于是得到了 G的 k个二部子图,他们的
并是 G. □

3.6 欧拉图

该图起源于七桥问题

Definition 3.9：
(1)包含每一条边的迹称作欧拉迹;
(2)闭的欧拉迹称作欧拉回;
(3)有欧拉回的图称作欧拉图;

通俗来看,一个图是欧拉图当且仅当它可以一笔不重复走地画完并且回到起点.此外还有欧拉
半图,即包含欧拉迹的图.此时就意味着能一笔画完但不要求回到原点.

Theorem 3.16图是欧拉图当且仅当他至多只有一个非平凡连通分支,并且每一个顶点度都是偶数.
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Proof 必要性是显然的.
充分性：对 G的边数 m作归纳.当 m=0时显然.假设小于 m时结论成立.设 H是 G中的非平

凡连通分支,则 H的每个顶点度都大于等于 2,于是由前面定理 3.6知 H中包含一个 cycle C.
考虑 𝐺1 是 G删去 C中的边得到的子图. 𝐺1 的每一个连通分支仍然满足条件,由归纳假设知

𝐺1 的每一个连通分支都包含一个欧拉回.将这些欧拉回和 C串起来,就是一个 G上的欧拉回. □

3.7 Hamilton图 *



Chapter 4
树、支撑树、距离

4.1 树

4.1.1 树的定义和基本性质

Definition 4.1：
(1)一个不含 cycle的图称作 forest(林)或者 acyclic(无圈).
(2)无圈连通图称作树.
(3)图中顶点度为 1的图称作 leaf(叶).
(4) G的一个支撑子图如果是树,称作支撑树.

支撑子图即 spanning subgraph,是指一个图删去某些边,保持顶点集相同的子图.从定义可以看
出一个树就是一个连通的林.森林的每一个连通分支都是树.

Example 4.1 Paths 一定是树, 这是由于 path 是无圈的连通图. 树是 path 当且仅当树中最大顶点度
不超过 2. (注意这里的“是”代表的是一种同构.必要性是显然的.我们可以断言树 T中一定有顶
点度为 1的顶点 𝑢1 否则由定理 3.6知其包含一个 cycle.同时,我们还可断言顶点度为 1的点有且
只有两个.否则若有三个,则与最大顶点度小于 3矛盾.记与 𝑢1 相邻的顶点是 𝑢2,则该过程可以一
直无重复点的继续下去直到最后一个顶点是另一个顶点度为 1的顶点.从而 T是一个 path.

Example 4.2一个图是树,则其恰只有一个支撑树.

下面我们介绍树的一些基本性质.

Lemma 4.1每一个至少包含两个顶点的树,一定包含两个 leaves(叶).删掉树的一个叶 (及其关联的
那条边),任然得到一个树.

Proof 在一个无圈图中,任意一个极大非平凡路的端点都没有除了路中出现的点之外的邻居.又由
于无圈性,知该端点的顶点度为 1.因为若端点的顶点度为 2(或更大),则 x-y-u这条 path加上 ux这
条边就组成了一个 cycle.从而我们得到两个 leaf,即一条极大非平凡路的两个端点.删掉一个叶显

53
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然不能使得一个无圈图有圈, 而叶也不包含在任何路的内部, 从而删去后的图仍是连通图, 进而是
树. □

这个引理告诉我们, 任何一个树, 我们可以通过删去一个叶得到一个更小的树, 于是在证明某
些关于树的结论时,我们可以考虑用数学归纳法.

Theorem 4.1对于一个 n阶图,下面四个命题等价：
(1) G是连通无圈的.
(2) G是连通的且有 n-1条边.
(3) G有 n-1条边且无圈.
(4) G中任意两点有且仅有一条路相连.

此证明参考图论课本第 68面.

Corollary 4.1 :
(1)树的每一条边都是割边.
(2)给树增加一条边,恰增加树中的一个 cycle.
(3)每一个连通图包含一个生成树.

Proof 由于 G中无圈,由前面定理 3.13知树的每一条边都是割边.由上定理知道树的两个顶点只有
一条路相连,于是增加一条边只能增加一个 cycle.将连通图中的所有的圈都删去一条边,就得到连
通的无圈图,即生成树. □

Theorem 4.2若 T, T’是连通图G的两个生成树,对于任意 𝑒 ∈ 𝐸 (𝑇) −𝐸 (𝑇 ′),存在 𝑒′ ∈ 𝐸 (𝑇 ′) −𝐸 (𝑇),
使得 T-e+e’是 G的一个生成树.

Proof 由上推论知道 e是 T的一个割边则记 U, U’是 T-e的两个连通分支.由于 T’是连通的,于是
有一条边 e’,一端在 U中,一端在 U’中.此时 T-e+e’是一个有 n-1条边的连通图,于是是一个树. □

4.1.2 距离、离心率、中心

Definition 4.2若图 G中有一条 uv-path,我们将 path的最小长度定义做是 uv两点的距离,如果两点
无 path,定义它们的距离是无穷远.图 G的直径 (diameter)是 G中的最大距离.一个顶点 v的离心
率 (eccentricity)是该点到别的点的最大距离.记作 𝜀(𝑣).最小的离心率称作 G的 radius(半径).

我们可以看出, 对于一个不连通的图,其直径是无穷.同时我们发现, 若一个图不是树, 其两点
间的距离其实并不好取,但树两点间只有一条 path,于是我们常在树上考虑距离.
下面这个图，每个顶点上的数字就是它的离心率，其半径是 2，直接是 4，最长路长度是 7.
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下面定理给出 G的直径同 G的补图的直径之间的关系.

Theorem 4.3若 G是简单图,则 G的直径大于等于 3可以推出 G的补图直径小于等于 3.

Proof 由于 G的直径大于 2,于是在 G中存在两点 x, y,它们不相邻也没有共同的邻居.此时对于 x,
y之外的顶点 z,其至多只能与 x, y其中一个相邻.于是在 G的补图里, z至少跟 x, y其中一个相邻.
现在：任取 u, v,在 G的补图中, u和 x, y中的一个相邻, x和 y相邻, v和 x, y其中一个相邻,从而
有一个 uv-path长度小于等于 3. □

Definition 4.3图 G的中心 (center)是由离心率等于图半径的顶点诱导的子图.

Theorem 4.4 (Jordan)树的中心是一个点或一条边.

Proof 我们对树 T的顶点数作数学归纳.当 n小于等于 2时结论显然成立.
现假设当小于 n时,结论成立.将 T的叶全部删除,得到树 T’.我们指出,任意一个 T中的顶点

u,在 T中与 u距离最远的顶点一定是 T的一个叶.由于 T中任意两个非叶的顶点都是由不含叶的
路相连的,并且所有叶都删去了,于是 𝜀𝑇 ′ (𝑢) = 𝜀𝑇 (𝑢) − 1,对于每一个 T’中的顶点 u都成立.因此,
T中非叶的顶点是 T中心的顶点,当且仅当它是 T’的中心的顶点.另一方面,叶一定不是中心的顶
点,因为它的离心率一定大于它邻居的离心率.
综上 T和 T’的中心有相同的顶点,由归纳假设即得. □

4.2 生成树和生成树的数量问题

4.2.1 树的枚举, Cayley公式

本节旨在解决一些 counting 问题, 例如：对于任意一个图, 我们可以得到多少个生成树. 著名
的 Cayley定理告诉我们,一个 n阶完全图,其有 𝑛𝑛−2 个生成树,我们将在本节证明这个定理.
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Example 4.3对于一个三个顶点的顶点集, 其生成树有三个, 是三条 path, 通过决定哪个元素为该
path的中心来区别.

Example 4.4对于一个四个顶点的顶点集,其生成树有 16个,分别是 4个星和 12条 path.

Theorem 4.5 (Cayley’s Formula)对于一个自然数集的 n阶子集 S,以 S为顶点的树有 𝑛𝑛−2 个.

Proof 此证明用到了双射的构造.我们要在 n个顶点的生成树的集合和一个基数为 𝑛𝑛−2 的集合找
到一个双射. 我们设 𝑆 = {1, ..., 𝑛}, 考虑 S 上的树 t, 和两个 S 中的点 x, y (分别称作左右端点). 令
T𝑛 = {(𝑡; 𝑥, 𝑦)},那么 |T𝑛 | = 𝑛2𝑇𝑛.我们要证明 |T |𝑛 = 𝑛𝑛.
考虑到 𝑁 到 𝑁 的映射集 𝑁𝑁 的基数是 𝑛𝑛,所以我们要找到 T𝑛到其上的双射.令 𝑓 : 𝑁 → 𝑁 为

一个映射,那么我们可以用有向图表示 𝑓 .比如映射

𝑓 =

(
1 2 3 4 5 6 7 8 9 10
7 5 5 9 1 2 5 8 4 7

)
可用如下有向图 𝐺 𝑓 表示

观察 𝐺 𝑓 的一个连通子图,其中任意两个顶点间都存在一个路径.由于每个顶点都发出一条边,
连通子图中的顶点数和边数相同,故恰好包含一个有向圈 (directed loop).令 𝑀 ⊆ 𝑁 为所有这些圈
的顶点的集合. M是唯一的最大子集,使得 𝐹 在M上的限制 (restriction)是M上的双射.记

𝑓 |𝑀 =

(
𝑎 · · · 𝑧

𝑓 (𝑎) · · · 𝑓 (𝑧)

)
这里第一行我们按照自然数字顺序排序, 同时也给出了第二行的排序. 我们令 𝑥 = 𝑓 (𝑎), 𝑦 = 𝑓 (𝑧),
于是定义了左右端点.现在我们构造对应该映射 𝑓 的树 𝑡：按第二行的顺序画从左端点到右端点的
路径, 将剩下的顶点按照 𝐺 𝑓 的方向添加, 并去掉所有方向得到一个有向图. 比如上面例子中的 𝑓 ,
我们有 𝑀 = {1, 4, 5, 7, 8, 9},得到的第二行 𝑓 (𝑀) = {7, 9, 1, 5, 8, 4},于是我们画出 𝑓 对应的图 𝑡如下
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这个对应很容易取得逆,只需确定左右顶点后,按照顺序取就行.
从而我们建立了 T𝑛 到 𝑁𝑁 的双射. □

4.2.2 边的收缩、一般无环图的生成树的数量

在上一小节中我们得到了 n阶完全图的生成树的数量,下面我们探究一般的图有多少生成树.

Definition 4.4在一个图 G中,假设有一条边 𝑒 = 𝑢𝑣 ,我们称图 𝐺 · 𝑒是边 e的收缩.其将 u, v两点用
另外的一个点代替,其他顶点与该点相邻当且仅当其与 u或 v相邻.

注意到,收缩后可能会产生重边,我们应该保留这些重边,并且对这些重边进行区别.在有了收缩的
概念后,我们可以对一般无环图的生成树数量进行计算.

Theorem 4.6我们记 𝜏 (𝐺) 是 G 的生成树的数量. 若 e 是 G 的非环边, 则有 𝜏 (𝐺) = 𝜏 (𝐺 − 𝑒) +
𝜏 (𝐺 · 𝑒)

Proof 首先 G中删去 e的那些生成树的数量恰是 𝜏 (𝐺) = 𝜏 (𝐺 − 𝑒).于是我们只需要再说明 G中包
含 e的生成树的数量等于 𝜏 (𝐺 · 𝑒) 即可.
考虑任意一个含 e的生成树,将 e收缩后得到一个 𝐺 · 𝑒的生成树,并且不同的含 e生成树收缩

后得到的是不同的 𝐺 · 𝑒 的生成树,于是这定义了一个单射.而每一个 𝐺 · 𝑒 的生成树,是经过先收
缩 e再删边得到的,这个过程可以看作是先删边再收缩 e,于是可以看作是一个 G的含 e的生成树
在收缩 e后得到的.从而这是一个双射,于是 G的含 e生成树和 𝐺 · 𝑒的生成树一样多. □
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用这个方法重复进行下去可以计算出 G 中生成树的数量, 前提是 G 的每一条边都不是环. 但
是由于删去图中的环不改变图的生成树的数量,于是我们可以先把所有环删去后再开始计算.
虽然上面给出了一个计算G的生成树数量的方法,但还是太过麻烦,矩阵图论中有一个更好的

结论.

Theorem 4.7给定 G是一个无环图, Q是其 Laplace矩阵,任意删掉其第 s行和第 t列后,得到的矩
阵 𝑄∗, 𝜏 (𝐺) = (−1)𝑠+𝑡 |𝑄∗ |

有此定理的话,前面的 𝐶𝑎𝑦𝑙𝑒𝑦公式就只是这个定理的简单推论了.



Chapter 5
匹配理论

本章简介：在第一小节中我们给出匹配的基本定义，以及一个匹配是最大匹配的充要条件.在
第二小节中我们给出，二部图存在匹配使得其中一个划分是饱和的充要条件.在第三四小节中，我
们给出最小顶点、边覆盖的 size和最大匹配、最大独立集的 size的数量关系.

5.1 Matching and Cover

5.1.1 匹配的基本概念,最大匹配、极大匹配

Definition 5.1 (1) G的匹配是一个无环的边集,其中任意两个边无公共顶点. (2)一个顶点称作是M
—饱和的,如果他和 M中的边关联.否则称作不饱和的 (unsaturated). (3) perfect matching是使得
G中所有顶点都饱和的 matching.

Example 5.1 𝐾𝑛,𝑛 有 n!个 perfec matching.可以设 𝐾𝑛,𝑛 的二部划分

𝑋 = {𝑥1, · · · , 𝑥𝑛}

𝑌 = {𝑦1, · · · , 𝑥𝑛}

则每一个 perfect matching都对应了一个 X到 Y的双射,其可以表示作 (1, 2, · · · , 𝑛)的置换,于是这
样的置换有 n!个.

一个很显然的事实是,奇数阶的图没有 perfect matching.
对于 𝐾2𝑛,用 𝑓𝑛 表示它的 perfect matching的数量.则我们有：选定某一个顶点,可以有 (2n-1)

种选法.于是
𝑓𝑛 = (2𝑛 − 1) 𝑓𝑛−1 = · · · = (2𝑛 − 1) (2𝑛 − 3) · · · (1)

两个不同的匹配之间有时可以进行比较：

59
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Definition 5.2 :
(1)极大匹配：一个匹配不能再通过新增加边来扩大.
(2)最大匹配：size最大的匹配,这里的 size指的自然是M中的边的数量.

一个极大匹配未必是最大匹配.例如考虑 𝑃4,我们选取中间的边,这就是一个极大匹配.但最大
匹配可以是取 𝑃4 左右的两条边.

𝑃4

蓝色的边是 𝑃4 的极大匹配，但不是最大匹配.

那怎么判别一个匹配是否是最大匹配呢？我们需要定义一些东西来刻画最大匹配.

Definition 5.3给定一个匹配M
(1) M-alternating path (交替路)指的是一个路, M中的边和不在M中的边交替出现在 path中.
(2) M-augmenting path (可扩路)指的是一条交替路,其端点是M-不饱和点.

当我们得到一个M-可扩路 P时,我们可以将 P中的M中的边全部替换做 P中的不在M中的
边,得到一个新的匹配 𝑀 ′,此匹配的 size比原来的匹配大了 1.于是我们立刻得到一个匹配是最大
匹配的必要条件是其不含M-可扩路.

Definition 5.4 G和 H是顶点集同为 V的图.称 𝐺Δ𝐻 是他们的对称差.这是一个以 V为顶点集,以
那些只在 G或只在 H出现的边为边的图.

Lemma 5.1两个匹配的对称差的每一个连通分支都是路或偶圈

Proof 以 F记作他们的对称差. F中的每一个顶点在每个匹配中至多只有一条边与他关联,于是在
F中至多两条边与他关联.从而对于 F的每一个连通分支,其都是最大顶点度小于等于 2的连通图,
从而只能是路或圈.若是圈,由于圈中的边是交替出现的,因此是偶数条边. □

有了这些准备我们可以给出一个匹配是最大匹配的充要条件

Theorem 5.1 (最大匹配的充要条件) M是最大匹配,当且仅当无 M-可扩路.

Proof 只证明充分性.假设 N是比M size更大的匹配,我们构造一条M-可扩路.令 F是 N和M的
对称差,由前一引理知道 F的连通分支是路或圈.由于 |𝑁 −𝑀 | > |𝑀 − 𝑁 |,说明 F中 N的边比M的
边多,于是至少存在一个 F的连通分支包含更多的 N的边,此含更多 N的边的连通分支便是一条
M-交替路 (因为 cycle含的边一样多) .由于其含更多 N的边,于是这条路起始于 N的边,结束于 N
的边,从而这是一条M-可扩路,矛盾. □
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5.1.2 Halls matching condition

当考虑工作-应聘者分配问题时, 大多数情况是应聘者数量大于工作岗位数量, 于是我们不需
要考虑一个 perfect matching, 只需要考虑一个 matching, 使得所有工作是饱和的即可. 于是我们考
虑一个有二部划分 X、Y的二部图,我们寻找匹配M,使得 X是饱和的.
我们知道这样的 matching M存在的必要条件是,对于 X的任意一个非空子集 S , S的邻居数

一定要大于等于 S. ,这个条件称作 Halls Condition. Hall证明了这个条件同时还是充分的.

Theorem 5.2 (二部图存在使得一个划分饱和的匹配的充要条件)对于一个有二部划分 X、Y的二部
图 G,存在使得 X饱和的划分的充要条件是,对于 X的任意子集 S, |𝑁 (𝑆) | ≥ |𝑆 |.

Proof 必要性是显然的,下面我们证明充分性.我们考虑命题的逆否命题：若 M是 G的最大匹配,
且M使 X不饱和,则存在 X的子集 S,使得 |𝑁 (𝑆) | < |𝑆 |. (这并不意味着有某个顶点无邻居,因为
可能是 S中的几个顶点共用一个 Y中的点作为邻居).我们来找出这样的子集 S.
任取一个 X中的M-不饱和点 u,命 S是所有 u可以通过M-交替路到达的 X中的点, T是 u可

以通过M-交替路到达的 Y中的点. ( S中一定有异于 u的点吗？答案是一定有,因为我们假设 u在
Y中是有邻居 y的,否则 S= {𝑢} 已经是一个满足条件的子集 S.边 uy不在 M中,但是 y一定和某
个 X中的顶点 x关联,否则将 uy这条边加入 M中就比 M大了.从而 u一定能通过交替路走到 X
中的某个顶点 x中. )
我们断言 M匹配了 T和 𝑆 − {𝑢}.观察从 u出发的一条 M-交替路,它先通过一条不在 M中的

边到达 T,再通过一条 M中的边回到 𝑆 − {𝑢}于是每一个 𝑆 − {𝑢}中的元素,都通过一条 M中的边
与 T中的顶点关联.显然, T是饱和的,任意 𝑡 ∈ 𝑇 ,存在 M中一条边,将 t与 𝑆 − {𝑢}中的某个元素
关联起来.这定义了一个 T到 𝑆 − {𝑢}的映射,可以证明这个映射是双射,从而 |𝑇 | = |𝑆 − {𝑢} |

下面我们说明,对于 𝑆 − {𝑢}中的任意顶点,其无除 T中的点之外的邻居.若不然,假设 𝑆 − {𝑢}
中的点 x还有除 T中的点 t外的邻居 y,由于 xy不能是 M中的边,则 {𝑢, 𝑡, 𝑥, 𝑦}是一条M-可扩路.
与M是最大匹配矛盾.从而

|𝑁 (𝑆) | = |𝑁 (𝑆 − {𝑢}) | = |𝑇 | = |𝑆 − {𝑢} | < |𝑆 |

. □

此定理告诉我们,如果想检验是否有匹配可以使得二部划分中的其中一个饱和,我们可以通过
检验它子集和子集的邻居数来判断.

Remark 5.1此定理和证明过程允许 G中有重边存在.

Corollary 5.1对于 k>0的每一个 k—正则二部图,都有一个 perfect matching.

Proof 对于正则的二部图,我们知道它是等二部图 (由定理3.2 )由对称性,我们只需考虑存在一个
匹配能够使得 X是饱和的就行了.任取一个 X的子集 S,考虑 S到 𝑁 (𝑆) 的边数 m.由于 G是 k-正
则的,于是 𝑚 = 𝑘 |𝑆 |.由于有 m条边与 𝑁 (𝑆)关联,从而 𝑚 ≤ 𝑘 |𝑁 (𝑆) |,即 |𝑁 (𝑆) | ≥ |𝑆 |.由上定理知,
G满足 Halls条件. □
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5.1.3 Vertex Cover、Edge Cover、independent set的关系

若一个图没有 perfect matching,我们可以通过 M-可扩路来判断一个匹配 M是否是最大匹配.
但若要将所有 M-交替路找出来, 然后判断是不是可扩路需要花很长的时间. 我们需要找到别的方
法.

Definition 5.5 G的一个顶点覆盖是 G顶点集的子集,其包含了每条边的至少一个端点.

Theorem 5.3 (Konig-Egervary Theorem)若 G是一个二部图,则 G的最大匹配的 size,等于 G的最
小顶点覆盖的 size.

Proof 设 G是一个有 X、Y的二部划分的二部图, Q是一个 G的最小顶点覆盖, M是 G的一个最大
匹配.显然有 |𝑄 | ≥ |𝑀 |.接下来我们构造一个 size为 |𝑄 |,使得这个不等式是可达的.
首先考虑 Q的分割,命 𝑅 = 𝑄

⋂
𝑋,𝑇 = 𝑄

⋂
𝑌 .记 H和 H’是由 𝑅

⋃ (𝑌 − 𝑇) 和 𝑇
⋃ (𝑋 − 𝑅) 诱

导的子图.若由 Halls定理可以证明, H中有匹配M使得 R饱和, H’中有匹配M’使得 T饱和.从而
取该匹配的并,就是一个 G上的匹配,这个匹配的 size就是 |𝑅 | + |𝑇 | = |𝑄 |.

下面我们说明 H满足 Halls条件.由于 𝑅
⋃
𝑇 = 𝑄 是一个顶点覆盖,于是从 𝑌 − 𝑇 到 𝑋 − 𝑅 无

边.如果 |𝑁𝐻 (𝑆) | < |𝑆 |,则我们可以用其替换掉 S,得到一个更小的顶点覆盖 Q. □

Definition 5.6：
(1)一个顶点集的子集称作是独立的 ( independent ) ,若该子集中任意两个顶点不相邻.
(2) G的 independent number是指其最大独立子集的 size.

一个图可能有很多个有最大 size 的独立子集, 例如 𝐶5 有五个不同的独立子集, 都是 size 为
independent number的独立子集.

我们知道,任意一个顶点都不可能覆盖 matching中的两条边.同样,没有哪个边可以包含独立
集中的两个点.这导出了一个对偶的覆盖问题.

Definition 5.7一个图 G的边覆盖是 G的边集的子集 L,使得 G中的任意一个顶点都与该子集中的
某条边关联.我们可以说 G的顶点被 L中的边覆盖.
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显然只有无孤立点的图才有边覆盖.一个 perfect matching就是一个边覆盖.一般来说,我们可
以通过对 matching增加边来获得一个边覆盖.为了方便后续叙述,下面给定一些记号.

Definition 5.8：
(1) G的最大独立子集的 size= 𝛼 (𝐺)
(2) G最大匹配的 size= 𝛼′ (𝐺)
(3)最小顶点覆盖的 size= 𝛽 (𝐺)
(4)最小边覆盖的 size= 𝛽′ (𝐺)

由前面的 Konig-Egervary定理,对于任意二部图,我们都有 𝛼′ (𝐺) = 𝛽 (𝐺) 接下来我们将证明,
对于没有孤立点的二部图, 我们有 𝛼 (𝐺) = 𝛽 (𝐺). 于是对于一般的二部图, 马上有 𝛼 (𝐺) ≤ 𝛽 (𝐺).
为此我们需要一点准备工作.

Definition 5.9给定顶点集的子集 S,我们用 𝑆来表示 𝑉 (𝐺) − 𝑆.

Lemma 5.2在图 G中,取顶点集的子集 S, S是独立集当且仅当 𝑆是一个顶点覆盖,因此

𝛼 (𝐺) + 𝛽 (𝐺) = 𝑛 (𝐺)

Proof 若 S是一个独立集,则任意一条边,其端点不可能都在 S中,于是任意一条边都至少与 𝑆 中
的一个点关联,从而 𝑆是顶点覆盖.反之也可以类似说明. □

Lemma 5.3若 G是一个无孤立点的图,则

𝛼′ (𝐺) + 𝛽′ (𝐺) = 𝑛 (𝐺)

Proof 证明思路是：给定一个最大匹配,我们找出其一个 size为 𝑛 (𝐺) − 𝛼′ (𝐺)的边覆盖.从而我们
得到 𝛽′ (𝐺) ≤ 𝑛 (𝐺) − 𝛼′ (𝐺).反之,给定一个最小边覆盖,我们找出一个 size为 𝑛 (𝐺) − 𝛽′ (𝐺)的匹
配.从而我们得到 𝛼′ (𝐺) ≥ 𝑛 (𝐺) − 𝛽′ (𝐺).从从而结论成立.下面我们进行所需构造.
给定一个G的最大匹配M,M已经是一个边集,其覆盖了𝑉 (𝐺)中的 2|𝑀 |个点,但还有 𝑛 (𝐺)−

2|𝑀 | 个点没有被覆盖,这些点都是 M-不饱和点.由 M的最大性以及无孤立点性,于是每一个不饱
和点都与饱和点有一条边, 因此我们可以往边集 M 中增加 𝑛 (𝐺) − 2|𝑀 | 条边, 得到一个 size 为
𝑛 (𝐺) − |𝑀 |的边集,并且此边集覆盖了所有 G的顶点,是一个边覆盖.
反之,给定一个最小边覆盖 L,由 L的最小性我们知道,若一条边 e的两个端点都属于 L的其

他边,则 e不属于 L.因此 L的每一个连通分支都至多只有一个点的度大于 1,即是一个只有一个点
不是叶的树.假设 L有 k个连通分支,由于每一个连通分支 C中有 |𝐶 | − 1条边,于是 |𝐿 | = 𝑛 (𝐺) − 𝑘
在每个连通分支中,任取一条边,得到 size为 k的边集M, M就是一个最大匹配. □

Corollary 5.2若 G是二部图,并且没有孤立点,则 𝛼 (𝐺) = 𝛽′ (𝐺)
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5.2 Factor

我们转回来研究一个一般图的 perfect matching，为此我们研究图的更多生成子图.图 G的一
个 factor是 G的一个生成子图. k-factor是一个生成 k-正则子图.
通过定义可以看出 1-factor 和 perfect matching 本质上就是同一种东西. 例如一个图 G 有 1-

factor，就意味着其有一个 1-正则生成子图，那么这个图的 perfect matching就是此 1-正则生成子
图的边集.

5.2.1 Tutte’s 1-factor theorem

Tutte发现了一个图有 1-factors的必要条件.若 G有一个 1-factor,我们考虑顶点集的子集 𝑆 ⊆
𝑉 (𝐺).则 𝐺 − 𝑆 的每一个奇数阶连通分支,都有一个顶点和该连通分支外的点相邻,这个点只能属
于 S. 由于这些对应的 S 中的点必须两两不同, 于是，将奇数阶连通分支的数量记作 𝑜 (𝐺)，就有
𝑜 (𝐺 − 𝑆) ≤ |𝑆 |.
同时 Tutte还指出这个条件是充分的，即：

Theorem 5.4 (Tutte’s condition)一个图 G有 1-factor ⇐⇒ 𝑜(𝐺 − 𝑆) ≤ |𝑆 |对于任意 𝑆 ⊂ 𝑉 (𝐺)都成
立.

Proof 必要性是显然的，我们来证明充分性.
任取 𝑆 ⊂ 𝑉 (𝐺),可以看出给 𝐺 − 𝑆增加任意边均不增加 𝑜(𝐺 − 𝑆)，只会保持不变或者减少.因

此若 G满足 tutte条件，那么 𝐺 ′ = 𝐺 + 𝑒也满足 tutte条件.更进一步，若 𝐺 ′无 1-factor，则 G也无
1-factor.
因此，若定理充分性不成立，则存在一个图 G满足 tutte条件，但不存在 1-factor.我们可以假

设 G任意加一条边就有 1-factor.我们来证明 G事实上是有 1-factor的.
取𝑈 = {𝑣 ∈ 𝑉 (𝐺) | 𝑑 (𝑣) = 𝑛 − 1}.
Case1: G-U的每一个连通分支都是完全图. 在这种情况下，每一个偶数阶的连通分支都可以

取一个 perfect matching.每一个奇连通分支，任取一个其中的点和 U中的点匹配，并且由于 𝑜(𝐺 −
𝑆) ≤ |𝑈 |，可以保证每一个取出的奇连通分支中的点匹配不同的 U中的点.每个奇连通分支中其余
的偶数多个点两两匹配。这样我们就得到了一个匹配，其使得𝐺−𝑆中的点是饱和的，U中 𝑜(𝐺−𝑆)
多个点也是饱和的.
我们可以断言此时 U中还剩下偶数多个点 (读者可以自行验证).于是再将 U中的点两两互相

匹配起来，最终我们得到一个 G上的 perfe matching，或者说 1-factor.
Case2: G-U存在一个连通分支是非完全图此时可以证明 G-U中存在两个点距离为 2；即存在

不相邻的两点 xz,它们有共同的邻居 𝑦 ∉ 𝑈;更进一步，存在 𝑤 ∈ 𝐺 −𝑈，w和 y不相邻. (因为若任
意 G-U中的顶点都和 y相邻的话，d(y)=n-1, 𝑦 ∈ 𝑈. )
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由 G的取法，任意加一条边都有 1-factor.于是 𝑀1, 𝑀2分别是 𝐺 + 𝑥𝑧, 𝐺 + 𝑦𝑤的 1-factors.我们
指出 𝑀1Δ𝑀2 包含一个不含 xz和 yw的 1-factor，于是此 1-factor就是 G的 1-factor.
命 𝐹 = 𝑀1Δ𝑀2，则 𝑥𝑧, 𝑦𝑤 ∈ 𝐹.由于每一个顶点在 𝑀1, 𝑀2中的度都是 1，于是在 F中的度是 0

或 2.因此 F的连通分支是孤立点或偶 cycle(由定理5.1).命 C是包含边 xz的偶 cycle.若 C不包含
yw，则所求的 1-factor就是 C中的 𝑀2 的边，和不在 C中的 𝑀1 的边.若 C包含 yw，也可以证明
其包含 1-factor. □



Chapter 6
着色问题

6.1 Vertex Coloring

Definition 6.1一个图 G 的 k-coloring 是一个 labeling 𝑓 : 𝑉 (𝐺) → 𝑆, 其中 |𝑆 | = 𝑘 , 通常我们令
𝑆 = [𝑛]. 称每一个顶点的 label 是一个 color. 相同 color 的顶点构成一个 color class. 特别的称一
个 k-coloring 是 proper 的，如果它使得相邻的顶点有不同的 color. 于是我们可以称一个图 G 是
k-colorable，如果他有一个 k-proper coloring.我们命 𝜒𝐺 是最小的 k,使得 G是 k-colorable.

Remark 6.1在每一个 proper coloring 里，每一个 color class 都是 independent set. 于是 G 是 k-
colorable当且仅当它是 k-partite.

Remark 6.2有 loops的图一定没有 proper coloring，故我们讨论的都是无环图.

Example 6.1由于 G是 2-colorable当且仅当是二部图，于是 Petersen图和 𝐶5 都是 𝜒(𝐺) ≥ 3的图，
可以证明它们有 3-proper coloring,于是它们的 𝜒(𝐺) = 3.

Definition 6.2称图 G是 k-chromatic(色)的，若 𝜒(𝐺) = 𝑘 .一个 k-色图的 k-proper coloring称作是
optimal coloring(最优的).如果对于 G的任意真子图 𝜒(𝐻) ≤ 𝜒(𝐺) = 𝑘，则称 G是 k-critical的.

Definition 6.3 G的 clique number指的是其最大 clique的阶数，记作 𝜔(𝐺)

Recall:我们用 𝛼(𝐺) 表示其最大 independent set的大小.在希腊字母表中 𝛼, 𝜔 分别是第一位
和最后一位.
我们可以�快写出并验证 𝜒(𝐺)的下界：

Proposition 6.1对于任意图 G，𝜒(𝐺) ≥ 𝜔(𝐺) 以及 𝜒(𝐺) ≥
𝑛(𝐺)
𝛼(𝐺)

Remark 6.3上面的第一个不等式，我们强调 𝜒(𝐺) > 𝜔(𝐺)是可能的.

Definition 6.4 G和 H的 cartesian product:
记作 𝐺□𝐻.是以 𝑉 (𝐺) ×𝑉 (𝐻)为顶点集，两点 (𝑢, 𝑣), (𝑢′, 𝑣′)相邻当且仅当它们之中的一个坐

标相同，另一个坐标在原图中相邻.

66
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通过定义我们可以看出 cartesian product运算是对称的，即 𝐺□𝐻 � 𝐻□𝐺.下图给出一个 carte-
sian product的例子.

Theorem 6.1 𝜒(𝐺□𝐻) = 𝑚𝑎𝑥 {𝜒(𝐺), 𝜒(𝐻)}

Proof 由于 {𝑔} □𝐻 是其一个子图，于是马上有 𝜒(𝐺□𝐻) ≥ 𝜒(𝐻) 类似的有 𝜒(𝐺□𝐻) ≥ 𝜒(𝐺) 于是
𝜒(𝐺□𝐻) ≥ 𝑚𝑎𝑥 {𝜒(𝐺), 𝜒(𝐻)}.
为了得到另一边不等式，我们命 𝑘 = 𝑚𝑎𝑥 {𝜒(𝐺), 𝜒(𝐻)}.我们接下来找出 𝜒(𝐺□𝐻) 的一个 k-

proper coloring.命 𝑔是一个 G的 𝜒(𝐺)-proper coloring, ℎ是一个 H的 𝜒(𝐻)-proper coloring.将每个
𝐺□𝐻的顶点 (𝑢, 𝑣) label作是 𝑔(𝑢) + ℎ(𝑣)模 k.则其是 𝐺□𝐻的一个 k-coloring.我们断言它是 proper
的.这是因为若 (𝑢′, 𝑣′) (𝑢, 𝑣),则

0 ≤ |(𝑔(𝑢′) + ℎ(𝑣′)) − (𝑔(𝑢) + ℎ(𝑣)) | ≤ 𝑘

于是它们不可能模 k 同余. 因此这是 𝐺□𝐻 的一个 k-proper coloring. 进而 𝜒(𝐺□𝐻) ≤ 𝑘 . 综上
𝜒(𝐺□𝐻) = 𝑚𝑎𝑥 {𝜒(𝐺), 𝜒(𝐻)}。 □
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